This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzcmn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cntzcmn.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| Assertion | cntzcmn | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzcmn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cntzcmn.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 3 | 1 2 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
| 4 | 3 | a1i | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 5 | simpl1 | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐺 ∈ CMnd ) | |
| 6 | simpl3 | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) | |
| 7 | simp2 | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ⊆ 𝐵 ) | |
| 8 | 7 | sselda | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 9 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 10 | 1 9 | cmncom | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 11 | 5 6 8 10 | syl3anc | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 12 | 11 | ralrimiva | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 13 | 1 9 2 | cntzel | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 15 | 12 14 | mpbird | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 16 | 15 | 3expia | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ) ) |
| 17 | 16 | ssrdv | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → 𝐵 ⊆ ( 𝑍 ‘ 𝑆 ) ) |
| 18 | 4 17 | eqssd | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) = 𝐵 ) |