This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double group subtraction ( subsub4 analog). (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | grpsubsub4 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) − 𝑍 ) = ( 𝑋 − ( 𝑍 + 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) | |
| 5 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) ∈ 𝐵 ) |
| 6 | 5 | 3adant3r3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − 𝑌 ) ∈ 𝐵 ) |
| 7 | simpr3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 8 | 1 2 3 | grpnpcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 − 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( ( 𝑋 − 𝑌 ) − 𝑍 ) + 𝑍 ) = ( 𝑋 − 𝑌 ) ) |
| 9 | 4 6 7 8 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 − 𝑌 ) − 𝑍 ) + 𝑍 ) = ( 𝑋 − 𝑌 ) ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( 𝑋 − 𝑌 ) − 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( 𝑋 − 𝑌 ) + 𝑌 ) ) |
| 11 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 − 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 − 𝑌 ) − 𝑍 ) ∈ 𝐵 ) |
| 12 | 4 6 7 11 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) − 𝑍 ) ∈ 𝐵 ) |
| 13 | simpr2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 14 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( 𝑋 − 𝑌 ) − 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ( 𝑋 − 𝑌 ) − 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( 𝑋 − 𝑌 ) − 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 15 | 4 12 7 13 14 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( 𝑋 − 𝑌 ) − 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( 𝑋 − 𝑌 ) − 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 16 | 1 2 3 | grpnpcan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 − 𝑌 ) + 𝑌 ) = 𝑋 ) |
| 17 | 16 | 3adant3r3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) + 𝑌 ) = 𝑋 ) |
| 18 | 10 15 17 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 − 𝑌 ) − 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑋 ) |
| 19 | simpr1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 20 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑍 + 𝑌 ) ∈ 𝐵 ) |
| 21 | 4 7 13 20 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 + 𝑌 ) ∈ 𝐵 ) |
| 22 | 1 2 3 | grpsubadd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑍 + 𝑌 ) ∈ 𝐵 ∧ ( ( 𝑋 − 𝑌 ) − 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 − ( 𝑍 + 𝑌 ) ) = ( ( 𝑋 − 𝑌 ) − 𝑍 ) ↔ ( ( ( 𝑋 − 𝑌 ) − 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑋 ) ) |
| 23 | 4 19 21 12 22 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − ( 𝑍 + 𝑌 ) ) = ( ( 𝑋 − 𝑌 ) − 𝑍 ) ↔ ( ( ( 𝑋 − 𝑌 ) − 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑋 ) ) |
| 24 | 18 23 | mpbird | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − ( 𝑍 + 𝑌 ) ) = ( ( 𝑋 − 𝑌 ) − 𝑍 ) ) |
| 25 | 24 | eqcomd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) − 𝑍 ) = ( 𝑋 − ( 𝑍 + 𝑌 ) ) ) |