This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every subset of the integers are closed in the topology on CC . (Contributed by Mario Carneiro, 6-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | recld2.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | sszcld | ⊢ ( 𝐴 ⊆ ℤ → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld2.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | 1 | zcld2 | ⊢ ℤ ∈ ( Clsd ‘ 𝐽 ) |
| 3 | id | ⊢ ( 𝐴 ⊆ ℤ → 𝐴 ⊆ ℤ ) | |
| 4 | zex | ⊢ ℤ ∈ V | |
| 5 | difss | ⊢ ( ℤ ∖ 𝐴 ) ⊆ ℤ | |
| 6 | 4 5 | elpwi2 | ⊢ ( ℤ ∖ 𝐴 ) ∈ 𝒫 ℤ |
| 7 | 1 | zdis | ⊢ ( 𝐽 ↾t ℤ ) = 𝒫 ℤ |
| 8 | 6 7 | eleqtrri | ⊢ ( ℤ ∖ 𝐴 ) ∈ ( 𝐽 ↾t ℤ ) |
| 9 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 10 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 11 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ℤ ⊆ ℂ ) → ( 𝐽 ↾t ℤ ) ∈ ( TopOn ‘ ℤ ) ) | |
| 12 | 9 10 11 | mp2an | ⊢ ( 𝐽 ↾t ℤ ) ∈ ( TopOn ‘ ℤ ) |
| 13 | 12 | topontopi | ⊢ ( 𝐽 ↾t ℤ ) ∈ Top |
| 14 | 12 | toponunii | ⊢ ℤ = ∪ ( 𝐽 ↾t ℤ ) |
| 15 | 14 | iscld | ⊢ ( ( 𝐽 ↾t ℤ ) ∈ Top → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 ↾t ℤ ) ) ↔ ( 𝐴 ⊆ ℤ ∧ ( ℤ ∖ 𝐴 ) ∈ ( 𝐽 ↾t ℤ ) ) ) ) |
| 16 | 13 15 | ax-mp | ⊢ ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 ↾t ℤ ) ) ↔ ( 𝐴 ⊆ ℤ ∧ ( ℤ ∖ 𝐴 ) ∈ ( 𝐽 ↾t ℤ ) ) ) |
| 17 | 3 8 16 | sylanblrc | ⊢ ( 𝐴 ⊆ ℤ → 𝐴 ∈ ( Clsd ‘ ( 𝐽 ↾t ℤ ) ) ) |
| 18 | restcldr | ⊢ ( ( ℤ ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ ( Clsd ‘ ( 𝐽 ↾t ℤ ) ) ) → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 19 | 2 17 18 | sylancr | ⊢ ( 𝐴 ⊆ ℤ → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) |