This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every subset of the integers are closed in the topology on CC . (Contributed by Mario Carneiro, 6-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | recld2.1 | |- J = ( TopOpen ` CCfld ) |
|
| Assertion | sszcld | |- ( A C_ ZZ -> A e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld2.1 | |- J = ( TopOpen ` CCfld ) |
|
| 2 | 1 | zcld2 | |- ZZ e. ( Clsd ` J ) |
| 3 | id | |- ( A C_ ZZ -> A C_ ZZ ) |
|
| 4 | zex | |- ZZ e. _V |
|
| 5 | difss | |- ( ZZ \ A ) C_ ZZ |
|
| 6 | 4 5 | elpwi2 | |- ( ZZ \ A ) e. ~P ZZ |
| 7 | 1 | zdis | |- ( J |`t ZZ ) = ~P ZZ |
| 8 | 6 7 | eleqtrri | |- ( ZZ \ A ) e. ( J |`t ZZ ) |
| 9 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 10 | zsscn | |- ZZ C_ CC |
|
| 11 | resttopon | |- ( ( J e. ( TopOn ` CC ) /\ ZZ C_ CC ) -> ( J |`t ZZ ) e. ( TopOn ` ZZ ) ) |
|
| 12 | 9 10 11 | mp2an | |- ( J |`t ZZ ) e. ( TopOn ` ZZ ) |
| 13 | 12 | topontopi | |- ( J |`t ZZ ) e. Top |
| 14 | 12 | toponunii | |- ZZ = U. ( J |`t ZZ ) |
| 15 | 14 | iscld | |- ( ( J |`t ZZ ) e. Top -> ( A e. ( Clsd ` ( J |`t ZZ ) ) <-> ( A C_ ZZ /\ ( ZZ \ A ) e. ( J |`t ZZ ) ) ) ) |
| 16 | 13 15 | ax-mp | |- ( A e. ( Clsd ` ( J |`t ZZ ) ) <-> ( A C_ ZZ /\ ( ZZ \ A ) e. ( J |`t ZZ ) ) ) |
| 17 | 3 8 16 | sylanblrc | |- ( A C_ ZZ -> A e. ( Clsd ` ( J |`t ZZ ) ) ) |
| 18 | restcldr | |- ( ( ZZ e. ( Clsd ` J ) /\ A e. ( Clsd ` ( J |`t ZZ ) ) ) -> A e. ( Clsd ` J ) ) |
|
| 19 | 2 17 18 | sylancr | |- ( A C_ ZZ -> A e. ( Clsd ` J ) ) |