This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm on a subspace is a restriction of the norm on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspn.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| sspn.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| sspn.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| sspn.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | ||
| Assertion | sspn | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑀 = ( 𝑁 ↾ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspn.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 2 | sspn.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 3 | sspn.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 4 | sspn.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 5 | 4 | sspnv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 6 | 1 3 | nvf | ⊢ ( 𝑊 ∈ NrmCVec → 𝑀 : 𝑌 ⟶ ℝ ) |
| 7 | 5 6 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑀 : 𝑌 ⟶ ℝ ) |
| 8 | 7 | ffnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑀 Fn 𝑌 ) |
| 9 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 10 | 9 2 | nvf | ⊢ ( 𝑈 ∈ NrmCVec → 𝑁 : ( BaseSet ‘ 𝑈 ) ⟶ ℝ ) |
| 11 | 10 | ffnd | ⊢ ( 𝑈 ∈ NrmCVec → 𝑁 Fn ( BaseSet ‘ 𝑈 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑁 Fn ( BaseSet ‘ 𝑈 ) ) |
| 13 | 9 1 4 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) |
| 14 | fnssres | ⊢ ( ( 𝑁 Fn ( BaseSet ‘ 𝑈 ) ∧ 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ↾ 𝑌 ) Fn 𝑌 ) | |
| 15 | 12 13 14 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑁 ↾ 𝑌 ) Fn 𝑌 ) |
| 16 | 10 | ffund | ⊢ ( 𝑈 ∈ NrmCVec → Fun 𝑁 ) |
| 17 | 16 | funresd | ⊢ ( 𝑈 ∈ NrmCVec → Fun ( 𝑁 ↾ 𝑌 ) ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑌 ) → Fun ( 𝑁 ↾ 𝑌 ) ) |
| 19 | fnresdm | ⊢ ( 𝑀 Fn 𝑌 → ( 𝑀 ↾ 𝑌 ) = 𝑀 ) | |
| 20 | 8 19 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑀 ↾ 𝑌 ) = 𝑀 ) |
| 21 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 22 | eqid | ⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) | |
| 23 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 24 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 25 | 21 22 23 24 2 3 4 | isssp | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ NrmCVec ∧ ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ ( ·𝑠OLD ‘ 𝑊 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ 𝑀 ⊆ 𝑁 ) ) ) ) |
| 26 | 25 | simplbda | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ ( ·𝑠OLD ‘ 𝑊 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ 𝑀 ⊆ 𝑁 ) ) |
| 27 | 26 | simp3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑀 ⊆ 𝑁 ) |
| 28 | ssres | ⊢ ( 𝑀 ⊆ 𝑁 → ( 𝑀 ↾ 𝑌 ) ⊆ ( 𝑁 ↾ 𝑌 ) ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑀 ↾ 𝑌 ) ⊆ ( 𝑁 ↾ 𝑌 ) ) |
| 30 | 20 29 | eqsstrrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑀 ⊆ ( 𝑁 ↾ 𝑌 ) ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑀 ⊆ ( 𝑁 ↾ 𝑌 ) ) |
| 32 | 6 | fdmd | ⊢ ( 𝑊 ∈ NrmCVec → dom 𝑀 = 𝑌 ) |
| 33 | 32 | eleq2d | ⊢ ( 𝑊 ∈ NrmCVec → ( 𝑥 ∈ dom 𝑀 ↔ 𝑥 ∈ 𝑌 ) ) |
| 34 | 33 | biimpar | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ dom 𝑀 ) |
| 35 | 5 34 | sylan | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ dom 𝑀 ) |
| 36 | funssfv | ⊢ ( ( Fun ( 𝑁 ↾ 𝑌 ) ∧ 𝑀 ⊆ ( 𝑁 ↾ 𝑌 ) ∧ 𝑥 ∈ dom 𝑀 ) → ( ( 𝑁 ↾ 𝑌 ) ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) | |
| 37 | 18 31 35 36 | syl3anc | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ↾ 𝑌 ) ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) |
| 38 | 37 | eqcomd | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑀 ‘ 𝑥 ) = ( ( 𝑁 ↾ 𝑌 ) ‘ 𝑥 ) ) |
| 39 | 8 15 38 | eqfnfvd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑀 = ( 𝑁 ↾ 𝑌 ) ) |