This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm on a subspace is a restriction of the norm on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspn.y | |- Y = ( BaseSet ` W ) |
|
| sspn.n | |- N = ( normCV ` U ) |
||
| sspn.m | |- M = ( normCV ` W ) |
||
| sspn.h | |- H = ( SubSp ` U ) |
||
| Assertion | sspn | |- ( ( U e. NrmCVec /\ W e. H ) -> M = ( N |` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspn.y | |- Y = ( BaseSet ` W ) |
|
| 2 | sspn.n | |- N = ( normCV ` U ) |
|
| 3 | sspn.m | |- M = ( normCV ` W ) |
|
| 4 | sspn.h | |- H = ( SubSp ` U ) |
|
| 5 | 4 | sspnv | |- ( ( U e. NrmCVec /\ W e. H ) -> W e. NrmCVec ) |
| 6 | 1 3 | nvf | |- ( W e. NrmCVec -> M : Y --> RR ) |
| 7 | 5 6 | syl | |- ( ( U e. NrmCVec /\ W e. H ) -> M : Y --> RR ) |
| 8 | 7 | ffnd | |- ( ( U e. NrmCVec /\ W e. H ) -> M Fn Y ) |
| 9 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 10 | 9 2 | nvf | |- ( U e. NrmCVec -> N : ( BaseSet ` U ) --> RR ) |
| 11 | 10 | ffnd | |- ( U e. NrmCVec -> N Fn ( BaseSet ` U ) ) |
| 12 | 11 | adantr | |- ( ( U e. NrmCVec /\ W e. H ) -> N Fn ( BaseSet ` U ) ) |
| 13 | 9 1 4 | sspba | |- ( ( U e. NrmCVec /\ W e. H ) -> Y C_ ( BaseSet ` U ) ) |
| 14 | fnssres | |- ( ( N Fn ( BaseSet ` U ) /\ Y C_ ( BaseSet ` U ) ) -> ( N |` Y ) Fn Y ) |
|
| 15 | 12 13 14 | syl2anc | |- ( ( U e. NrmCVec /\ W e. H ) -> ( N |` Y ) Fn Y ) |
| 16 | 10 | ffund | |- ( U e. NrmCVec -> Fun N ) |
| 17 | 16 | funresd | |- ( U e. NrmCVec -> Fun ( N |` Y ) ) |
| 18 | 17 | ad2antrr | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ x e. Y ) -> Fun ( N |` Y ) ) |
| 19 | fnresdm | |- ( M Fn Y -> ( M |` Y ) = M ) |
|
| 20 | 8 19 | syl | |- ( ( U e. NrmCVec /\ W e. H ) -> ( M |` Y ) = M ) |
| 21 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 22 | eqid | |- ( +v ` W ) = ( +v ` W ) |
|
| 23 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 24 | eqid | |- ( .sOLD ` W ) = ( .sOLD ` W ) |
|
| 25 | 21 22 23 24 2 3 4 | isssp | |- ( U e. NrmCVec -> ( W e. H <-> ( W e. NrmCVec /\ ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ M C_ N ) ) ) ) |
| 26 | 25 | simplbda | |- ( ( U e. NrmCVec /\ W e. H ) -> ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ M C_ N ) ) |
| 27 | 26 | simp3d | |- ( ( U e. NrmCVec /\ W e. H ) -> M C_ N ) |
| 28 | ssres | |- ( M C_ N -> ( M |` Y ) C_ ( N |` Y ) ) |
|
| 29 | 27 28 | syl | |- ( ( U e. NrmCVec /\ W e. H ) -> ( M |` Y ) C_ ( N |` Y ) ) |
| 30 | 20 29 | eqsstrrd | |- ( ( U e. NrmCVec /\ W e. H ) -> M C_ ( N |` Y ) ) |
| 31 | 30 | adantr | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ x e. Y ) -> M C_ ( N |` Y ) ) |
| 32 | 6 | fdmd | |- ( W e. NrmCVec -> dom M = Y ) |
| 33 | 32 | eleq2d | |- ( W e. NrmCVec -> ( x e. dom M <-> x e. Y ) ) |
| 34 | 33 | biimpar | |- ( ( W e. NrmCVec /\ x e. Y ) -> x e. dom M ) |
| 35 | 5 34 | sylan | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ x e. Y ) -> x e. dom M ) |
| 36 | funssfv | |- ( ( Fun ( N |` Y ) /\ M C_ ( N |` Y ) /\ x e. dom M ) -> ( ( N |` Y ) ` x ) = ( M ` x ) ) |
|
| 37 | 18 31 35 36 | syl3anc | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ x e. Y ) -> ( ( N |` Y ) ` x ) = ( M ` x ) ) |
| 38 | 37 | eqcomd | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ x e. Y ) -> ( M ` x ) = ( ( N |` Y ) ` x ) ) |
| 39 | 8 15 38 | eqfnfvd | |- ( ( U e. NrmCVec /\ W e. H ) -> M = ( N |` Y ) ) |