This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping for the norm function. (Contributed by NM, 11-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvf.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvf | ⊢ ( 𝑈 ∈ NrmCVec → 𝑁 : 𝑋 ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvf.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvf.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 3 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 6 | 1 3 4 5 2 | nvi | ⊢ ( 𝑈 ∈ NrmCVec → ( 〈 ( +𝑣 ‘ 𝑈 ) , ( ·𝑠OLD ‘ 𝑈 ) 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 7 | 6 | simp2d | ⊢ ( 𝑈 ∈ NrmCVec → 𝑁 : 𝑋 ⟶ ℝ ) |