This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspims.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| sspims.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| sspims.c | ⊢ 𝐶 = ( IndMet ‘ 𝑊 ) | ||
| sspims.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | ||
| Assertion | sspimsval | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐶 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspims.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 2 | sspims.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 3 | sspims.c | ⊢ 𝐶 = ( IndMet ‘ 𝑊 ) | |
| 4 | sspims.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 5 | 4 | sspnv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 6 | eqid | ⊢ ( −𝑣 ‘ 𝑊 ) = ( −𝑣 ‘ 𝑊 ) | |
| 7 | 1 6 | nvmcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) |
| 8 | 7 | 3expb | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) |
| 9 | 5 8 | sylan | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) |
| 10 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 11 | eqid | ⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) | |
| 12 | 1 10 11 4 | sspnval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) ) |
| 13 | 12 | 3expa | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) ) |
| 14 | 9 13 | syldan | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) ) |
| 15 | eqid | ⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) | |
| 16 | 1 15 6 4 | sspmval | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) = ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 18 | 14 17 | eqtrd | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 19 | 1 6 11 3 | imsdval | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 𝐶 𝐵 ) = ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) ) |
| 20 | 19 | 3expb | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐶 𝐵 ) = ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) ) |
| 21 | 5 20 | sylan | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐶 𝐵 ) = ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) ) |
| 22 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 23 | 22 1 4 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) |
| 24 | 23 | sseld | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐴 ∈ 𝑌 → 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ) ) |
| 25 | 23 | sseld | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐵 ∈ 𝑌 → 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) |
| 26 | 24 25 | anim12d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) ) |
| 27 | 26 | imp | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) |
| 28 | 22 15 10 2 | imsdval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 29 | 28 | 3expb | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 30 | 29 | adantlr | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 31 | 27 30 | syldan | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 32 | 18 21 31 | 3eqtr4d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐶 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |