This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspims.y | |- Y = ( BaseSet ` W ) |
|
| sspims.d | |- D = ( IndMet ` U ) |
||
| sspims.c | |- C = ( IndMet ` W ) |
||
| sspims.h | |- H = ( SubSp ` U ) |
||
| Assertion | sspimsval | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A C B ) = ( A D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspims.y | |- Y = ( BaseSet ` W ) |
|
| 2 | sspims.d | |- D = ( IndMet ` U ) |
|
| 3 | sspims.c | |- C = ( IndMet ` W ) |
|
| 4 | sspims.h | |- H = ( SubSp ` U ) |
|
| 5 | 4 | sspnv | |- ( ( U e. NrmCVec /\ W e. H ) -> W e. NrmCVec ) |
| 6 | eqid | |- ( -v ` W ) = ( -v ` W ) |
|
| 7 | 1 6 | nvmcl | |- ( ( W e. NrmCVec /\ A e. Y /\ B e. Y ) -> ( A ( -v ` W ) B ) e. Y ) |
| 8 | 7 | 3expb | |- ( ( W e. NrmCVec /\ ( A e. Y /\ B e. Y ) ) -> ( A ( -v ` W ) B ) e. Y ) |
| 9 | 5 8 | sylan | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A ( -v ` W ) B ) e. Y ) |
| 10 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 11 | eqid | |- ( normCV ` W ) = ( normCV ` W ) |
|
| 12 | 1 10 11 4 | sspnval | |- ( ( U e. NrmCVec /\ W e. H /\ ( A ( -v ` W ) B ) e. Y ) -> ( ( normCV ` W ) ` ( A ( -v ` W ) B ) ) = ( ( normCV ` U ) ` ( A ( -v ` W ) B ) ) ) |
| 13 | 12 | 3expa | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A ( -v ` W ) B ) e. Y ) -> ( ( normCV ` W ) ` ( A ( -v ` W ) B ) ) = ( ( normCV ` U ) ` ( A ( -v ` W ) B ) ) ) |
| 14 | 9 13 | syldan | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( ( normCV ` W ) ` ( A ( -v ` W ) B ) ) = ( ( normCV ` U ) ` ( A ( -v ` W ) B ) ) ) |
| 15 | eqid | |- ( -v ` U ) = ( -v ` U ) |
|
| 16 | 1 15 6 4 | sspmval | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A ( -v ` W ) B ) = ( A ( -v ` U ) B ) ) |
| 17 | 16 | fveq2d | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( ( normCV ` U ) ` ( A ( -v ` W ) B ) ) = ( ( normCV ` U ) ` ( A ( -v ` U ) B ) ) ) |
| 18 | 14 17 | eqtrd | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( ( normCV ` W ) ` ( A ( -v ` W ) B ) ) = ( ( normCV ` U ) ` ( A ( -v ` U ) B ) ) ) |
| 19 | 1 6 11 3 | imsdval | |- ( ( W e. NrmCVec /\ A e. Y /\ B e. Y ) -> ( A C B ) = ( ( normCV ` W ) ` ( A ( -v ` W ) B ) ) ) |
| 20 | 19 | 3expb | |- ( ( W e. NrmCVec /\ ( A e. Y /\ B e. Y ) ) -> ( A C B ) = ( ( normCV ` W ) ` ( A ( -v ` W ) B ) ) ) |
| 21 | 5 20 | sylan | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A C B ) = ( ( normCV ` W ) ` ( A ( -v ` W ) B ) ) ) |
| 22 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 23 | 22 1 4 | sspba | |- ( ( U e. NrmCVec /\ W e. H ) -> Y C_ ( BaseSet ` U ) ) |
| 24 | 23 | sseld | |- ( ( U e. NrmCVec /\ W e. H ) -> ( A e. Y -> A e. ( BaseSet ` U ) ) ) |
| 25 | 23 | sseld | |- ( ( U e. NrmCVec /\ W e. H ) -> ( B e. Y -> B e. ( BaseSet ` U ) ) ) |
| 26 | 24 25 | anim12d | |- ( ( U e. NrmCVec /\ W e. H ) -> ( ( A e. Y /\ B e. Y ) -> ( A e. ( BaseSet ` U ) /\ B e. ( BaseSet ` U ) ) ) ) |
| 27 | 26 | imp | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A e. ( BaseSet ` U ) /\ B e. ( BaseSet ` U ) ) ) |
| 28 | 22 15 10 2 | imsdval | |- ( ( U e. NrmCVec /\ A e. ( BaseSet ` U ) /\ B e. ( BaseSet ` U ) ) -> ( A D B ) = ( ( normCV ` U ) ` ( A ( -v ` U ) B ) ) ) |
| 29 | 28 | 3expb | |- ( ( U e. NrmCVec /\ ( A e. ( BaseSet ` U ) /\ B e. ( BaseSet ` U ) ) ) -> ( A D B ) = ( ( normCV ` U ) ` ( A ( -v ` U ) B ) ) ) |
| 30 | 29 | adantlr | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. ( BaseSet ` U ) /\ B e. ( BaseSet ` U ) ) ) -> ( A D B ) = ( ( normCV ` U ) ` ( A ( -v ` U ) B ) ) ) |
| 31 | 27 30 | syldan | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A D B ) = ( ( normCV ` U ) ` ( A ( -v ` U ) B ) ) ) |
| 32 | 18 21 31 | 3eqtr4d | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A C B ) = ( A D B ) ) |