This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspm.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| sspm.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| sspm.l | ⊢ 𝐿 = ( −𝑣 ‘ 𝑊 ) | ||
| sspm.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | ||
| Assertion | sspmval | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐿 𝐵 ) = ( 𝐴 𝑀 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspm.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 2 | sspm.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | sspm.l | ⊢ 𝐿 = ( −𝑣 ‘ 𝑊 ) | |
| 4 | sspm.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 5 | 4 | sspnv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 6 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 7 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 8 | 1 7 | nvscl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑌 ) → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) |
| 9 | 6 8 | mp3an2 | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝐵 ∈ 𝑌 ) → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) |
| 10 | 9 | ex | ⊢ ( 𝑊 ∈ NrmCVec → ( 𝐵 ∈ 𝑌 → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) ) |
| 11 | 5 10 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐵 ∈ 𝑌 → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) ) |
| 12 | 11 | anim2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 ∈ 𝑌 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) ) ) |
| 13 | 12 | imp | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∈ 𝑌 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) ) |
| 14 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 15 | eqid | ⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) | |
| 16 | 1 14 15 4 | sspgval | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) ) → ( 𝐴 ( +𝑣 ‘ 𝑊 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) ) |
| 17 | 13 16 | syldan | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ( +𝑣 ‘ 𝑊 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) ) |
| 18 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 19 | 1 18 7 4 | sspsval | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑌 ) ) → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) = ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) |
| 20 | 6 19 | mpanr1 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐵 ∈ 𝑌 ) → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) = ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) |
| 21 | 20 | adantrl | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) = ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) |
| 22 | 21 | oveq2d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 23 | 17 22 | eqtrd | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ( +𝑣 ‘ 𝑊 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 24 | 1 15 7 3 | nvmval | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 𝐿 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑊 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) ) |
| 25 | 24 | 3expb | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐿 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑊 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) ) |
| 26 | 5 25 | sylan | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐿 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑊 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) ) |
| 27 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 28 | 27 1 4 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) |
| 29 | 28 | sseld | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐴 ∈ 𝑌 → 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ) ) |
| 30 | 28 | sseld | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐵 ∈ 𝑌 → 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) |
| 31 | 29 30 | anim12d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) ) |
| 32 | 31 | imp | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) |
| 33 | 27 14 18 2 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 34 | 33 | 3expb | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 35 | 34 | adantlr | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 36 | 32 35 | syldan | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 37 | 23 26 36 | 3eqtr4d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐿 𝐵 ) = ( 𝐴 𝑀 𝐵 ) ) |