This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of the nonnegative integers is finite if and only if there is a nonnegative integer so that all integers greater than this integer are not contained in the subset. (Contributed by AV, 3-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssnn0fi | ⊢ ( 𝑆 ⊆ ℕ0 → ( 𝑆 ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i | ⊢ ( 𝑆 = ∅ → 0 ∈ ℕ0 ) |
| 3 | breq1 | ⊢ ( 𝑠 = 0 → ( 𝑠 < 𝑥 ↔ 0 < 𝑥 ) ) | |
| 4 | 3 | imbi1d | ⊢ ( 𝑠 = 0 → ( ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ↔ ( 0 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 5 | 4 | ralbidv | ⊢ ( 𝑠 = 0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ↔ ∀ 𝑥 ∈ ℕ0 ( 0 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑆 = ∅ ∧ 𝑠 = 0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ↔ ∀ 𝑥 ∈ ℕ0 ( 0 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 7 | nnel | ⊢ ( ¬ 𝑥 ∉ 𝑆 ↔ 𝑥 ∈ 𝑆 ) | |
| 8 | n0i | ⊢ ( 𝑥 ∈ 𝑆 → ¬ 𝑆 = ∅ ) | |
| 9 | 7 8 | sylbi | ⊢ ( ¬ 𝑥 ∉ 𝑆 → ¬ 𝑆 = ∅ ) |
| 10 | 9 | con4i | ⊢ ( 𝑆 = ∅ → 𝑥 ∉ 𝑆 ) |
| 11 | 10 | a1d | ⊢ ( 𝑆 = ∅ → ( 0 < 𝑥 → 𝑥 ∉ 𝑆 ) ) |
| 12 | 11 | ralrimivw | ⊢ ( 𝑆 = ∅ → ∀ 𝑥 ∈ ℕ0 ( 0 < 𝑥 → 𝑥 ∉ 𝑆 ) ) |
| 13 | 2 6 12 | rspcedvd | ⊢ ( 𝑆 = ∅ → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) |
| 14 | 13 | 2a1d | ⊢ ( 𝑆 = ∅ → ( 𝑆 ⊆ ℕ0 → ( 𝑆 ∈ Fin → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) ) |
| 15 | ltso | ⊢ < Or ℝ | |
| 16 | id | ⊢ ( 𝑆 ⊆ ℕ0 → 𝑆 ⊆ ℕ0 ) | |
| 17 | nn0ssre | ⊢ ℕ0 ⊆ ℝ | |
| 18 | 16 17 | sstrdi | ⊢ ( 𝑆 ⊆ ℕ0 → 𝑆 ⊆ ℝ ) |
| 19 | 18 | 3anim3i | ⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) → ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℝ ) ) |
| 20 | fisup2g | ⊢ ( ( < Or ℝ ∧ ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℝ ) ) → ∃ 𝑠 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑠 → ∃ 𝑧 ∈ 𝑆 𝑦 < 𝑧 ) ) ) | |
| 21 | 15 19 20 | sylancr | ⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) → ∃ 𝑠 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑠 → ∃ 𝑧 ∈ 𝑆 𝑦 < 𝑧 ) ) ) |
| 22 | simp3 | ⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) → 𝑆 ⊆ ℕ0 ) | |
| 23 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑠 < 𝑦 ↔ 𝑠 < 𝑥 ) ) | |
| 24 | 23 | notbid | ⊢ ( 𝑦 = 𝑥 → ( ¬ 𝑠 < 𝑦 ↔ ¬ 𝑠 < 𝑥 ) ) |
| 25 | 24 | rspcva | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ) → ¬ 𝑠 < 𝑥 ) |
| 26 | 25 | 2a1d | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ) → ( 𝑥 ∈ ℕ0 → ( ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → ¬ 𝑠 < 𝑥 ) ) ) |
| 27 | 26 | expcom | ⊢ ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 → ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ ℕ0 → ( ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → ¬ 𝑠 < 𝑥 ) ) ) ) |
| 28 | 27 | com24 | ⊢ ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 → ( ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑥 ∈ ℕ0 → ( 𝑥 ∈ 𝑆 → ¬ 𝑠 < 𝑥 ) ) ) ) |
| 29 | 28 | imp31 | ⊢ ( ( ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 ∈ 𝑆 → ¬ 𝑠 < 𝑥 ) ) |
| 30 | 7 29 | biimtrid | ⊢ ( ( ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( ¬ 𝑥 ∉ 𝑆 → ¬ 𝑠 < 𝑥 ) ) |
| 31 | 30 | con4d | ⊢ ( ( ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) |
| 32 | 31 | ralrimiva | ⊢ ( ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) |
| 33 | 32 | ex | ⊢ ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 → ( ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑠 → ∃ 𝑧 ∈ 𝑆 𝑦 < 𝑧 ) ) → ( ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 35 | 34 | com12 | ⊢ ( ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑠 → ∃ 𝑧 ∈ 𝑆 𝑦 < 𝑧 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 36 | 35 | reximdva | ⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) → ( ∃ 𝑠 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑠 → ∃ 𝑧 ∈ 𝑆 𝑦 < 𝑧 ) ) → ∃ 𝑠 ∈ 𝑆 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 37 | ssrexv | ⊢ ( 𝑆 ⊆ ℕ0 → ( ∃ 𝑠 ∈ 𝑆 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) | |
| 38 | 22 36 37 | sylsyld | ⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) → ( ∃ 𝑠 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑠 → ∃ 𝑧 ∈ 𝑆 𝑦 < 𝑧 ) ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 39 | 21 38 | mpd | ⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) |
| 40 | 39 | 3exp | ⊢ ( 𝑆 ∈ Fin → ( 𝑆 ≠ ∅ → ( 𝑆 ⊆ ℕ0 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) ) |
| 41 | 40 | com3l | ⊢ ( 𝑆 ≠ ∅ → ( 𝑆 ⊆ ℕ0 → ( 𝑆 ∈ Fin → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) ) |
| 42 | 14 41 | pm2.61ine | ⊢ ( 𝑆 ⊆ ℕ0 → ( 𝑆 ∈ Fin → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 43 | fzfi | ⊢ ( 0 ... 𝑠 ) ∈ Fin | |
| 44 | elfz2nn0 | ⊢ ( 𝑦 ∈ ( 0 ... 𝑠 ) ↔ ( 𝑦 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝑦 ≤ 𝑠 ) ) | |
| 45 | 44 | notbii | ⊢ ( ¬ 𝑦 ∈ ( 0 ... 𝑠 ) ↔ ¬ ( 𝑦 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝑦 ≤ 𝑠 ) ) |
| 46 | 3ianor | ⊢ ( ¬ ( 𝑦 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝑦 ≤ 𝑠 ) ↔ ( ¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) ) | |
| 47 | 3orass | ⊢ ( ( ¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) ↔ ( ¬ 𝑦 ∈ ℕ0 ∨ ( ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) ) ) | |
| 48 | 45 46 47 | 3bitri | ⊢ ( ¬ 𝑦 ∈ ( 0 ... 𝑠 ) ↔ ( ¬ 𝑦 ∈ ℕ0 ∨ ( ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) ) ) |
| 49 | ssel | ⊢ ( 𝑆 ⊆ ℕ0 → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℕ0 ) ) | |
| 50 | 49 | adantr | ⊢ ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℕ0 ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℕ0 ) ) |
| 52 | 51 | con3rr3 | ⊢ ( ¬ 𝑦 ∈ ℕ0 → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) |
| 53 | notnotb | ⊢ ( 𝑦 ∈ ℕ0 ↔ ¬ ¬ 𝑦 ∈ ℕ0 ) | |
| 54 | pm2.24 | ⊢ ( 𝑠 ∈ ℕ0 → ( ¬ 𝑠 ∈ ℕ0 → ¬ 𝑦 ∈ 𝑆 ) ) | |
| 55 | 54 | adantl | ⊢ ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ¬ 𝑠 ∈ ℕ0 → ¬ 𝑦 ∈ 𝑆 ) ) |
| 56 | 55 | adantr | ⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( ¬ 𝑠 ∈ ℕ0 → ¬ 𝑦 ∈ 𝑆 ) ) |
| 57 | 56 | com12 | ⊢ ( ¬ 𝑠 ∈ ℕ0 → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) |
| 58 | 57 | a1d | ⊢ ( ¬ 𝑠 ∈ ℕ0 → ( 𝑦 ∈ ℕ0 → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 59 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑠 < 𝑥 ↔ 𝑠 < 𝑦 ) ) | |
| 60 | neleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∉ 𝑆 ↔ 𝑦 ∉ 𝑆 ) ) | |
| 61 | 59 60 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ↔ ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) ) ) |
| 62 | 61 | rspcva | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) ) |
| 63 | nn0re | ⊢ ( 𝑠 ∈ ℕ0 → 𝑠 ∈ ℝ ) | |
| 64 | nn0re | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) | |
| 65 | ltnle | ⊢ ( ( 𝑠 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑠 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑠 ) ) | |
| 66 | 63 64 65 | syl2an | ⊢ ( ( 𝑠 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑠 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑠 ) ) |
| 67 | df-nel | ⊢ ( 𝑦 ∉ 𝑆 ↔ ¬ 𝑦 ∈ 𝑆 ) | |
| 68 | 67 | a1i | ⊢ ( ( 𝑠 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 ∉ 𝑆 ↔ ¬ 𝑦 ∈ 𝑆 ) ) |
| 69 | 66 68 | imbi12d | ⊢ ( ( 𝑠 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) ↔ ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 70 | 69 | biimpd | ⊢ ( ( 𝑠 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 71 | 70 | ex | ⊢ ( 𝑠 ∈ ℕ0 → ( 𝑦 ∈ ℕ0 → ( ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) ) |
| 72 | 71 | adantl | ⊢ ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( 𝑦 ∈ ℕ0 → ( ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) ) |
| 73 | 72 | com12 | ⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) ) |
| 74 | 73 | adantr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) ) |
| 75 | 62 74 | mpid | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 76 | 75 | ex | ⊢ ( 𝑦 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) → ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) ) |
| 77 | 76 | com13 | ⊢ ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) → ( 𝑦 ∈ ℕ0 → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) ) |
| 78 | 77 | imp | ⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( 𝑦 ∈ ℕ0 → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 79 | 78 | com13 | ⊢ ( ¬ 𝑦 ≤ 𝑠 → ( 𝑦 ∈ ℕ0 → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 80 | 58 79 | jaoi | ⊢ ( ( ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) → ( 𝑦 ∈ ℕ0 → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 81 | 53 80 | biimtrrid | ⊢ ( ( ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) → ( ¬ ¬ 𝑦 ∈ ℕ0 → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 82 | 81 | impcom | ⊢ ( ( ¬ ¬ 𝑦 ∈ ℕ0 ∧ ( ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) ) → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) |
| 83 | 52 82 | jaoi3 | ⊢ ( ( ¬ 𝑦 ∈ ℕ0 ∨ ( ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) ) → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) |
| 84 | 48 83 | sylbi | ⊢ ( ¬ 𝑦 ∈ ( 0 ... 𝑠 ) → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) |
| 85 | 84 | com12 | ⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( ¬ 𝑦 ∈ ( 0 ... 𝑠 ) → ¬ 𝑦 ∈ 𝑆 ) ) |
| 86 | 85 | con4d | ⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ( 0 ... 𝑠 ) ) ) |
| 87 | 86 | ssrdv | ⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → 𝑆 ⊆ ( 0 ... 𝑠 ) ) |
| 88 | ssfi | ⊢ ( ( ( 0 ... 𝑠 ) ∈ Fin ∧ 𝑆 ⊆ ( 0 ... 𝑠 ) ) → 𝑆 ∈ Fin ) | |
| 89 | 43 87 88 | sylancr | ⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → 𝑆 ∈ Fin ) |
| 90 | 89 | rexlimdva2 | ⊢ ( 𝑆 ⊆ ℕ0 → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) → 𝑆 ∈ Fin ) ) |
| 91 | 42 90 | impbid | ⊢ ( 𝑆 ⊆ ℕ0 → ( 𝑆 ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |