This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabssnn0fi | ⊢ ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ⊢ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ⊆ ℕ0 | |
| 2 | ssnn0fi | ⊢ ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ⊆ ℕ0 → ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) ) ) | |
| 3 | nnel | ⊢ ( ¬ 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 ℕ0 | |
| 6 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] ¬ 𝜑 | |
| 7 | 6 | nfn | ⊢ Ⅎ 𝑥 ¬ [ 𝑦 / 𝑥 ] ¬ 𝜑 |
| 8 | sbceq2a | ⊢ ( 𝑦 = 𝑥 → ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ 𝜑 ) ) | |
| 9 | 8 | equcoms | ⊢ ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ 𝜑 ) ) |
| 10 | 9 | con2bid | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 11 | 4 5 7 10 | elrabf | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ↔ ( 𝑦 ∈ ℕ0 ∧ ¬ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 12 | 11 | baib | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 ∈ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ↔ ¬ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 13 | 3 12 | bitrid | ⊢ ( 𝑦 ∈ ℕ0 → ( ¬ 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ↔ ¬ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 14 | 13 | con4bid | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑠 < 𝑦 → 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) ↔ ( 𝑠 < 𝑦 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) ) |
| 16 | 15 | ralbiia | ⊢ ( ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) ↔ ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 17 | nfv | ⊢ Ⅎ 𝑥 𝑠 < 𝑦 | |
| 18 | 17 6 | nfim | ⊢ Ⅎ 𝑥 ( 𝑠 < 𝑦 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) |
| 19 | nfv | ⊢ Ⅎ 𝑦 ( 𝑠 < 𝑥 → ¬ 𝜑 ) | |
| 20 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑠 < 𝑦 ↔ 𝑠 < 𝑥 ) ) | |
| 21 | 20 8 | imbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑠 < 𝑦 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) ) |
| 22 | 18 19 21 | cbvralw | ⊢ ( ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) |
| 23 | 16 22 | bitri | ⊢ ( ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) |
| 24 | 23 | a1i | ⊢ ( ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) ) |
| 25 | 24 | rexbidva | ⊢ ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ⊆ ℕ0 → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) ) |
| 26 | 2 25 | bitrd | ⊢ ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ⊆ ℕ0 → ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) ) |
| 27 | 1 26 | ax-mp | ⊢ ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) |