This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elnmz.1 | ⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } | |
| nmzsubg.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| nmzsubg.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | isnsg4 | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnmz.1 | ⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } | |
| 2 | nmzsubg.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | nmzsubg.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | 2 3 | isnsg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 5 | eqcom | ⊢ ( 𝑁 = 𝑋 ↔ 𝑋 = 𝑁 ) | |
| 6 | 1 | eqeq2i | ⊢ ( 𝑋 = 𝑁 ↔ 𝑋 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } ) |
| 7 | rabid2 | ⊢ ( 𝑋 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) | |
| 8 | 5 6 7 | 3bitri | ⊢ ( 𝑁 = 𝑋 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 9 | 8 | anbi2i | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 = 𝑋 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 10 | 4 9 | bitr4i | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 = 𝑋 ) ) |