This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The existence of a subimage. (Contributed by NM, 8-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssimaex.1 | ⊢ 𝐴 ∈ V | |
| Assertion | ssimaex | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ 𝐴 ) ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssimaex.1 | ⊢ 𝐴 ∈ V | |
| 2 | dmres | ⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) | |
| 3 | 2 | imaeq2i | ⊢ ( 𝐹 “ dom ( 𝐹 ↾ 𝐴 ) ) = ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) |
| 4 | imadmres | ⊢ ( 𝐹 “ dom ( 𝐹 ↾ 𝐴 ) ) = ( 𝐹 “ 𝐴 ) | |
| 5 | 3 4 | eqtr3i | ⊢ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) = ( 𝐹 “ 𝐴 ) |
| 6 | 5 | sseq2i | ⊢ ( 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ↔ 𝐵 ⊆ ( 𝐹 “ 𝐴 ) ) |
| 7 | ssrab2 | ⊢ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ⊆ ( 𝐴 ∩ dom 𝐹 ) | |
| 8 | ssel2 | ⊢ ( ( 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) | |
| 9 | 8 | adantll | ⊢ ( ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) |
| 10 | fvelima | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → ∃ 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ( 𝐹 ‘ 𝑤 ) = 𝑧 ) | |
| 11 | 10 | ex | ⊢ ( Fun 𝐹 → ( 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) → ∃ 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
| 12 | 11 | adantr | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) → ∃ 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
| 13 | eleq1a | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) ) | |
| 14 | 13 | anim2d | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) → ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 16 | 15 | eleq1d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ↔ ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) ) |
| 17 | 16 | elrab | ⊢ ( 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ↔ ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) ) |
| 18 | 14 17 | imbitrrdi | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) → 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) |
| 19 | simpr | ⊢ ( ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) → ( 𝐹 ‘ 𝑤 ) = 𝑧 ) | |
| 20 | 18 19 | jca2 | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) → ( 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ∧ ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) ) |
| 21 | 20 | reximdv2 | ⊢ ( 𝑧 ∈ 𝐵 → ( ∃ 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ( 𝐹 ‘ 𝑤 ) = 𝑧 → ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
| 22 | 21 | adantl | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ 𝐵 ) → ( ∃ 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ( 𝐹 ‘ 𝑤 ) = 𝑧 → ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
| 23 | funfn | ⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) | |
| 24 | inss2 | ⊢ ( 𝐴 ∩ dom 𝐹 ) ⊆ dom 𝐹 | |
| 25 | 7 24 | sstri | ⊢ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ⊆ dom 𝐹 |
| 26 | fvelimab | ⊢ ( ( 𝐹 Fn dom 𝐹 ∧ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ⊆ dom 𝐹 ) → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ↔ ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) | |
| 27 | 25 26 | mpan2 | ⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ↔ ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
| 28 | 23 27 | sylbi | ⊢ ( Fun 𝐹 → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ↔ ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
| 29 | 28 | adantr | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ↔ ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
| 30 | 22 29 | sylibrd | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ 𝐵 ) → ( ∃ 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) |
| 31 | 12 30 | syld | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) → 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) |
| 32 | 31 | adantlr | ⊢ ( ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) → 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) |
| 33 | 9 32 | mpd | ⊢ ( ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) |
| 34 | 33 | ex | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) |
| 35 | fvelima | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) → ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) | |
| 36 | 35 | ex | ⊢ ( Fun 𝐹 → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) → ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 ) ) |
| 37 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) | |
| 38 | 37 | biimpcd | ⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 → ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐵 ) ) |
| 39 | 38 | adantl | ⊢ ( ( 𝑤 ∈ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐵 ) ) |
| 40 | 17 39 | sylbi | ⊢ ( 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } → ( ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐵 ) ) |
| 41 | 40 | rexlimiv | ⊢ ( ∃ 𝑤 ∈ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ( 𝐹 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ 𝐵 ) |
| 42 | 36 41 | syl6 | ⊢ ( Fun 𝐹 → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) → 𝑧 ∈ 𝐵 ) ) |
| 43 | 42 | adantr | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → ( 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) → 𝑧 ∈ 𝐵 ) ) |
| 44 | 34 43 | impbid | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) |
| 45 | 44 | eqrdv | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → 𝐵 = ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) |
| 46 | 1 | inex1 | ⊢ ( 𝐴 ∩ dom 𝐹 ) ∈ V |
| 47 | 46 | rabex | ⊢ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ∈ V |
| 48 | sseq1 | ⊢ ( 𝑥 = { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } → ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ↔ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ⊆ ( 𝐴 ∩ dom 𝐹 ) ) ) | |
| 49 | imaeq2 | ⊢ ( 𝑥 = { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) | |
| 50 | 49 | eqeq2d | ⊢ ( 𝑥 = { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } → ( 𝐵 = ( 𝐹 “ 𝑥 ) ↔ 𝐵 = ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) |
| 51 | 48 50 | anbi12d | ⊢ ( 𝑥 = { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } → ( ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ↔ ( { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) ) ) |
| 52 | 47 51 | spcev | ⊢ ( ( { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ { 𝑦 ∈ ( 𝐴 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) ) → ∃ 𝑥 ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |
| 53 | 7 45 52 | sylancr | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → ∃ 𝑥 ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |
| 54 | inss1 | ⊢ ( 𝐴 ∩ dom 𝐹 ) ⊆ 𝐴 | |
| 55 | sstr | ⊢ ( ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ ( 𝐴 ∩ dom 𝐹 ) ⊆ 𝐴 ) → 𝑥 ⊆ 𝐴 ) | |
| 56 | 54 55 | mpan2 | ⊢ ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) → 𝑥 ⊆ 𝐴 ) |
| 57 | 56 | anim1i | ⊢ ( ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) → ( 𝑥 ⊆ 𝐴 ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |
| 58 | 57 | eximi | ⊢ ( ∃ 𝑥 ( 𝑥 ⊆ ( 𝐴 ∩ dom 𝐹 ) ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |
| 59 | 53 58 | syl | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ ( 𝐴 ∩ dom 𝐹 ) ) ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |
| 60 | 6 59 | sylan2br | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ ( 𝐹 “ 𝐴 ) ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝐵 = ( 𝐹 “ 𝑥 ) ) ) |