This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The existence of a subimage. (Contributed by NM, 8-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssimaex.1 | |- A e. _V |
|
| Assertion | ssimaex | |- ( ( Fun F /\ B C_ ( F " A ) ) -> E. x ( x C_ A /\ B = ( F " x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssimaex.1 | |- A e. _V |
|
| 2 | dmres | |- dom ( F |` A ) = ( A i^i dom F ) |
|
| 3 | 2 | imaeq2i | |- ( F " dom ( F |` A ) ) = ( F " ( A i^i dom F ) ) |
| 4 | imadmres | |- ( F " dom ( F |` A ) ) = ( F " A ) |
|
| 5 | 3 4 | eqtr3i | |- ( F " ( A i^i dom F ) ) = ( F " A ) |
| 6 | 5 | sseq2i | |- ( B C_ ( F " ( A i^i dom F ) ) <-> B C_ ( F " A ) ) |
| 7 | ssrab2 | |- { y e. ( A i^i dom F ) | ( F ` y ) e. B } C_ ( A i^i dom F ) |
|
| 8 | ssel2 | |- ( ( B C_ ( F " ( A i^i dom F ) ) /\ z e. B ) -> z e. ( F " ( A i^i dom F ) ) ) |
|
| 9 | 8 | adantll | |- ( ( ( Fun F /\ B C_ ( F " ( A i^i dom F ) ) ) /\ z e. B ) -> z e. ( F " ( A i^i dom F ) ) ) |
| 10 | fvelima | |- ( ( Fun F /\ z e. ( F " ( A i^i dom F ) ) ) -> E. w e. ( A i^i dom F ) ( F ` w ) = z ) |
|
| 11 | 10 | ex | |- ( Fun F -> ( z e. ( F " ( A i^i dom F ) ) -> E. w e. ( A i^i dom F ) ( F ` w ) = z ) ) |
| 12 | 11 | adantr | |- ( ( Fun F /\ z e. B ) -> ( z e. ( F " ( A i^i dom F ) ) -> E. w e. ( A i^i dom F ) ( F ` w ) = z ) ) |
| 13 | eleq1a | |- ( z e. B -> ( ( F ` w ) = z -> ( F ` w ) e. B ) ) |
|
| 14 | 13 | anim2d | |- ( z e. B -> ( ( w e. ( A i^i dom F ) /\ ( F ` w ) = z ) -> ( w e. ( A i^i dom F ) /\ ( F ` w ) e. B ) ) ) |
| 15 | fveq2 | |- ( y = w -> ( F ` y ) = ( F ` w ) ) |
|
| 16 | 15 | eleq1d | |- ( y = w -> ( ( F ` y ) e. B <-> ( F ` w ) e. B ) ) |
| 17 | 16 | elrab | |- ( w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } <-> ( w e. ( A i^i dom F ) /\ ( F ` w ) e. B ) ) |
| 18 | 14 17 | imbitrrdi | |- ( z e. B -> ( ( w e. ( A i^i dom F ) /\ ( F ` w ) = z ) -> w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) |
| 19 | simpr | |- ( ( w e. ( A i^i dom F ) /\ ( F ` w ) = z ) -> ( F ` w ) = z ) |
|
| 20 | 18 19 | jca2 | |- ( z e. B -> ( ( w e. ( A i^i dom F ) /\ ( F ` w ) = z ) -> ( w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } /\ ( F ` w ) = z ) ) ) |
| 21 | 20 | reximdv2 | |- ( z e. B -> ( E. w e. ( A i^i dom F ) ( F ` w ) = z -> E. w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } ( F ` w ) = z ) ) |
| 22 | 21 | adantl | |- ( ( Fun F /\ z e. B ) -> ( E. w e. ( A i^i dom F ) ( F ` w ) = z -> E. w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } ( F ` w ) = z ) ) |
| 23 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 24 | inss2 | |- ( A i^i dom F ) C_ dom F |
|
| 25 | 7 24 | sstri | |- { y e. ( A i^i dom F ) | ( F ` y ) e. B } C_ dom F |
| 26 | fvelimab | |- ( ( F Fn dom F /\ { y e. ( A i^i dom F ) | ( F ` y ) e. B } C_ dom F ) -> ( z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) <-> E. w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } ( F ` w ) = z ) ) |
|
| 27 | 25 26 | mpan2 | |- ( F Fn dom F -> ( z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) <-> E. w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } ( F ` w ) = z ) ) |
| 28 | 23 27 | sylbi | |- ( Fun F -> ( z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) <-> E. w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } ( F ` w ) = z ) ) |
| 29 | 28 | adantr | |- ( ( Fun F /\ z e. B ) -> ( z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) <-> E. w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } ( F ` w ) = z ) ) |
| 30 | 22 29 | sylibrd | |- ( ( Fun F /\ z e. B ) -> ( E. w e. ( A i^i dom F ) ( F ` w ) = z -> z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) ) |
| 31 | 12 30 | syld | |- ( ( Fun F /\ z e. B ) -> ( z e. ( F " ( A i^i dom F ) ) -> z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) ) |
| 32 | 31 | adantlr | |- ( ( ( Fun F /\ B C_ ( F " ( A i^i dom F ) ) ) /\ z e. B ) -> ( z e. ( F " ( A i^i dom F ) ) -> z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) ) |
| 33 | 9 32 | mpd | |- ( ( ( Fun F /\ B C_ ( F " ( A i^i dom F ) ) ) /\ z e. B ) -> z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) |
| 34 | 33 | ex | |- ( ( Fun F /\ B C_ ( F " ( A i^i dom F ) ) ) -> ( z e. B -> z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) ) |
| 35 | fvelima | |- ( ( Fun F /\ z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) -> E. w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } ( F ` w ) = z ) |
|
| 36 | 35 | ex | |- ( Fun F -> ( z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) -> E. w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } ( F ` w ) = z ) ) |
| 37 | eleq1 | |- ( ( F ` w ) = z -> ( ( F ` w ) e. B <-> z e. B ) ) |
|
| 38 | 37 | biimpcd | |- ( ( F ` w ) e. B -> ( ( F ` w ) = z -> z e. B ) ) |
| 39 | 38 | adantl | |- ( ( w e. ( A i^i dom F ) /\ ( F ` w ) e. B ) -> ( ( F ` w ) = z -> z e. B ) ) |
| 40 | 17 39 | sylbi | |- ( w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } -> ( ( F ` w ) = z -> z e. B ) ) |
| 41 | 40 | rexlimiv | |- ( E. w e. { y e. ( A i^i dom F ) | ( F ` y ) e. B } ( F ` w ) = z -> z e. B ) |
| 42 | 36 41 | syl6 | |- ( Fun F -> ( z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) -> z e. B ) ) |
| 43 | 42 | adantr | |- ( ( Fun F /\ B C_ ( F " ( A i^i dom F ) ) ) -> ( z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) -> z e. B ) ) |
| 44 | 34 43 | impbid | |- ( ( Fun F /\ B C_ ( F " ( A i^i dom F ) ) ) -> ( z e. B <-> z e. ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) ) |
| 45 | 44 | eqrdv | |- ( ( Fun F /\ B C_ ( F " ( A i^i dom F ) ) ) -> B = ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) |
| 46 | 1 | inex1 | |- ( A i^i dom F ) e. _V |
| 47 | 46 | rabex | |- { y e. ( A i^i dom F ) | ( F ` y ) e. B } e. _V |
| 48 | sseq1 | |- ( x = { y e. ( A i^i dom F ) | ( F ` y ) e. B } -> ( x C_ ( A i^i dom F ) <-> { y e. ( A i^i dom F ) | ( F ` y ) e. B } C_ ( A i^i dom F ) ) ) |
|
| 49 | imaeq2 | |- ( x = { y e. ( A i^i dom F ) | ( F ` y ) e. B } -> ( F " x ) = ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) |
|
| 50 | 49 | eqeq2d | |- ( x = { y e. ( A i^i dom F ) | ( F ` y ) e. B } -> ( B = ( F " x ) <-> B = ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) ) |
| 51 | 48 50 | anbi12d | |- ( x = { y e. ( A i^i dom F ) | ( F ` y ) e. B } -> ( ( x C_ ( A i^i dom F ) /\ B = ( F " x ) ) <-> ( { y e. ( A i^i dom F ) | ( F ` y ) e. B } C_ ( A i^i dom F ) /\ B = ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) ) ) |
| 52 | 47 51 | spcev | |- ( ( { y e. ( A i^i dom F ) | ( F ` y ) e. B } C_ ( A i^i dom F ) /\ B = ( F " { y e. ( A i^i dom F ) | ( F ` y ) e. B } ) ) -> E. x ( x C_ ( A i^i dom F ) /\ B = ( F " x ) ) ) |
| 53 | 7 45 52 | sylancr | |- ( ( Fun F /\ B C_ ( F " ( A i^i dom F ) ) ) -> E. x ( x C_ ( A i^i dom F ) /\ B = ( F " x ) ) ) |
| 54 | inss1 | |- ( A i^i dom F ) C_ A |
|
| 55 | sstr | |- ( ( x C_ ( A i^i dom F ) /\ ( A i^i dom F ) C_ A ) -> x C_ A ) |
|
| 56 | 54 55 | mpan2 | |- ( x C_ ( A i^i dom F ) -> x C_ A ) |
| 57 | 56 | anim1i | |- ( ( x C_ ( A i^i dom F ) /\ B = ( F " x ) ) -> ( x C_ A /\ B = ( F " x ) ) ) |
| 58 | 57 | eximi | |- ( E. x ( x C_ ( A i^i dom F ) /\ B = ( F " x ) ) -> E. x ( x C_ A /\ B = ( F " x ) ) ) |
| 59 | 53 58 | syl | |- ( ( Fun F /\ B C_ ( F " ( A i^i dom F ) ) ) -> E. x ( x C_ A /\ B = ( F " x ) ) ) |
| 60 | 6 59 | sylan2br | |- ( ( Fun F /\ B C_ ( F " A ) ) -> E. x ( x C_ A /\ B = ( F " x ) ) ) |