This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of ssfi using ax-pow . (Contributed by NM, 24-Jun-1998) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfiALT | |- ( ( A e. Fin /\ B C_ A ) -> B e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | |- ( A e. Fin <-> E. x e. _om A ~~ x ) |
|
| 2 | bren | |- ( A ~~ x <-> E. z z : A -1-1-onto-> x ) |
|
| 3 | f1ofo | |- ( z : A -1-1-onto-> x -> z : A -onto-> x ) |
|
| 4 | imassrn | |- ( z " B ) C_ ran z |
|
| 5 | forn | |- ( z : A -onto-> x -> ran z = x ) |
|
| 6 | 4 5 | sseqtrid | |- ( z : A -onto-> x -> ( z " B ) C_ x ) |
| 7 | 3 6 | syl | |- ( z : A -1-1-onto-> x -> ( z " B ) C_ x ) |
| 8 | ssnnfi | |- ( ( x e. _om /\ ( z " B ) C_ x ) -> ( z " B ) e. Fin ) |
|
| 9 | isfi | |- ( ( z " B ) e. Fin <-> E. y e. _om ( z " B ) ~~ y ) |
|
| 10 | 8 9 | sylib | |- ( ( x e. _om /\ ( z " B ) C_ x ) -> E. y e. _om ( z " B ) ~~ y ) |
| 11 | 7 10 | sylan2 | |- ( ( x e. _om /\ z : A -1-1-onto-> x ) -> E. y e. _om ( z " B ) ~~ y ) |
| 12 | 11 | adantrr | |- ( ( x e. _om /\ ( z : A -1-1-onto-> x /\ B C_ A ) ) -> E. y e. _om ( z " B ) ~~ y ) |
| 13 | f1of1 | |- ( z : A -1-1-onto-> x -> z : A -1-1-> x ) |
|
| 14 | f1ores | |- ( ( z : A -1-1-> x /\ B C_ A ) -> ( z |` B ) : B -1-1-onto-> ( z " B ) ) |
|
| 15 | 13 14 | sylan | |- ( ( z : A -1-1-onto-> x /\ B C_ A ) -> ( z |` B ) : B -1-1-onto-> ( z " B ) ) |
| 16 | vex | |- z e. _V |
|
| 17 | 16 | resex | |- ( z |` B ) e. _V |
| 18 | f1oeq1 | |- ( x = ( z |` B ) -> ( x : B -1-1-onto-> ( z " B ) <-> ( z |` B ) : B -1-1-onto-> ( z " B ) ) ) |
|
| 19 | 17 18 | spcev | |- ( ( z |` B ) : B -1-1-onto-> ( z " B ) -> E. x x : B -1-1-onto-> ( z " B ) ) |
| 20 | bren | |- ( B ~~ ( z " B ) <-> E. x x : B -1-1-onto-> ( z " B ) ) |
|
| 21 | 19 20 | sylibr | |- ( ( z |` B ) : B -1-1-onto-> ( z " B ) -> B ~~ ( z " B ) ) |
| 22 | entr | |- ( ( B ~~ ( z " B ) /\ ( z " B ) ~~ y ) -> B ~~ y ) |
|
| 23 | 21 22 | sylan | |- ( ( ( z |` B ) : B -1-1-onto-> ( z " B ) /\ ( z " B ) ~~ y ) -> B ~~ y ) |
| 24 | 15 23 | sylan | |- ( ( ( z : A -1-1-onto-> x /\ B C_ A ) /\ ( z " B ) ~~ y ) -> B ~~ y ) |
| 25 | 24 | ex | |- ( ( z : A -1-1-onto-> x /\ B C_ A ) -> ( ( z " B ) ~~ y -> B ~~ y ) ) |
| 26 | 25 | reximdv | |- ( ( z : A -1-1-onto-> x /\ B C_ A ) -> ( E. y e. _om ( z " B ) ~~ y -> E. y e. _om B ~~ y ) ) |
| 27 | isfi | |- ( B e. Fin <-> E. y e. _om B ~~ y ) |
|
| 28 | 26 27 | imbitrrdi | |- ( ( z : A -1-1-onto-> x /\ B C_ A ) -> ( E. y e. _om ( z " B ) ~~ y -> B e. Fin ) ) |
| 29 | 28 | adantl | |- ( ( x e. _om /\ ( z : A -1-1-onto-> x /\ B C_ A ) ) -> ( E. y e. _om ( z " B ) ~~ y -> B e. Fin ) ) |
| 30 | 12 29 | mpd | |- ( ( x e. _om /\ ( z : A -1-1-onto-> x /\ B C_ A ) ) -> B e. Fin ) |
| 31 | 30 | exp32 | |- ( x e. _om -> ( z : A -1-1-onto-> x -> ( B C_ A -> B e. Fin ) ) ) |
| 32 | 31 | exlimdv | |- ( x e. _om -> ( E. z z : A -1-1-onto-> x -> ( B C_ A -> B e. Fin ) ) ) |
| 33 | 2 32 | biimtrid | |- ( x e. _om -> ( A ~~ x -> ( B C_ A -> B e. Fin ) ) ) |
| 34 | 33 | rexlimiv | |- ( E. x e. _om A ~~ x -> ( B C_ A -> B e. Fin ) ) |
| 35 | 1 34 | sylbi | |- ( A e. Fin -> ( B C_ A -> B e. Fin ) ) |
| 36 | 35 | imp | |- ( ( A e. Fin /\ B C_ A ) -> B e. Fin ) |