This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgmulgass.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srgmulgass.m | ⊢ · = ( .g ‘ 𝑅 ) | ||
| srgmulgass.t | ⊢ × = ( .r ‘ 𝑅 ) | ||
| Assertion | srgmulgass | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgmulgass.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srgmulgass.m | ⊢ · = ( .g ‘ 𝑅 ) | |
| 3 | srgmulgass.t | ⊢ × = ( .r ‘ 𝑅 ) | |
| 4 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 · 𝑋 ) = ( 0 · 𝑋 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( 0 · 𝑋 ) × 𝑌 ) ) |
| 6 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( 0 · ( 𝑋 × 𝑌 ) ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( 0 · 𝑋 ) × 𝑌 ) = ( 0 · ( 𝑋 × 𝑌 ) ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ) ↔ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( 0 · 𝑋 ) × 𝑌 ) = ( 0 · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 9 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝑋 ) = ( 𝑦 · 𝑋 ) ) | |
| 10 | 9 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( 𝑦 · 𝑋 ) × 𝑌 ) ) |
| 11 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) | |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ) ↔ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 14 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · 𝑋 ) = ( ( 𝑦 + 1 ) · 𝑋 ) ) | |
| 15 | 14 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) ) |
| 16 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) | |
| 17 | 15 16 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ) ↔ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 19 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) | |
| 20 | 19 | oveq1d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( 𝑁 · 𝑋 ) × 𝑌 ) ) |
| 21 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) | |
| 22 | 20 21 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) |
| 23 | 22 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ) ↔ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 24 | simpr | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → 𝑅 ∈ SRing ) | |
| 25 | simpr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 26 | 25 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → 𝑌 ∈ 𝐵 ) |
| 27 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 28 | 1 3 27 | srglz | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) × 𝑌 ) = ( 0g ‘ 𝑅 ) ) |
| 29 | 24 26 28 | syl2anc | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( 0g ‘ 𝑅 ) × 𝑌 ) = ( 0g ‘ 𝑅 ) ) |
| 30 | simpl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 31 | 30 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → 𝑋 ∈ 𝐵 ) |
| 32 | 1 27 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 33 | 31 32 | syl | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 34 | 33 | oveq1d | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( 0 · 𝑋 ) × 𝑌 ) = ( ( 0g ‘ 𝑅 ) × 𝑌 ) ) |
| 35 | 1 3 | srgcl | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 36 | 24 31 26 35 | syl3anc | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 37 | 1 27 2 | mulg0 | ⊢ ( ( 𝑋 × 𝑌 ) ∈ 𝐵 → ( 0 · ( 𝑋 × 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) |
| 38 | 36 37 | syl | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( 0 · ( 𝑋 × 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) |
| 39 | 29 34 38 | 3eqtr4d | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( 0 · 𝑋 ) × 𝑌 ) = ( 0 · ( 𝑋 × 𝑌 ) ) ) |
| 40 | srgmnd | ⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd ) | |
| 41 | 40 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → 𝑅 ∈ Mnd ) |
| 42 | 41 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → 𝑅 ∈ Mnd ) |
| 43 | simpl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → 𝑦 ∈ ℕ0 ) | |
| 44 | 31 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → 𝑋 ∈ 𝐵 ) |
| 45 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 46 | 1 2 45 | mulgnn0p1 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) ) |
| 47 | 42 43 44 46 | syl3anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) ) |
| 48 | 47 | oveq1d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) × 𝑌 ) ) |
| 49 | 24 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → 𝑅 ∈ SRing ) |
| 50 | 1 2 42 43 44 | mulgnn0cld | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 51 | 26 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → 𝑌 ∈ 𝐵 ) |
| 52 | 1 45 3 | srgdir | ⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝑦 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 53 | 49 50 44 51 52 | syl13anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → ( ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 54 | 48 53 | eqtrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 55 | 54 | adantr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) ∧ ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 56 | oveq1 | ⊢ ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 · ( 𝑋 × 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) | |
| 57 | 35 | 3expb | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 58 | 57 | ancoms | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 59 | 58 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 60 | 1 2 45 | mulgnn0p1 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ ( 𝑋 × 𝑌 ) ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 · ( 𝑋 × 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 61 | 42 43 59 60 | syl3anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 · ( 𝑋 × 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 62 | 61 | eqcomd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) → ( ( 𝑦 · ( 𝑋 × 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) |
| 63 | 56 62 | sylan9eqr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) ∧ ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) |
| 64 | 55 63 | eqtrd | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) ) ∧ ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) |
| 65 | 64 | exp31 | ⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 66 | 65 | a2d | ⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) → ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 67 | 8 13 18 23 39 66 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑅 ∈ SRing ) → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) |
| 68 | 67 | expd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑅 ∈ SRing → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 69 | 68 | 3impib | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑅 ∈ SRing → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) |
| 70 | 69 | impcom | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) |