This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringlghm . (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srglmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srglmhm.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | srglmhm | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srglmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srglmhm.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | srgmnd | ⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd ) | |
| 4 | 3 3 | jca | ⊢ ( 𝑅 ∈ SRing → ( 𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd ) ) |
| 6 | 1 2 | srgcl | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 · 𝑥 ) ∈ 𝐵 ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 · 𝑥 ) ∈ 𝐵 ) |
| 8 | 7 | fmpttd | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) : 𝐵 ⟶ 𝐵 ) |
| 9 | 3anass | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 11 | 1 10 2 | srgdi | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑋 · ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑏 ) ) ) |
| 12 | 9 11 | sylan2br | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ) → ( 𝑋 · ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑏 ) ) ) |
| 13 | 12 | anassrs | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑋 · ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑏 ) ) ) |
| 14 | 1 10 | srgacl | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 15 | 14 | 3expb | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 16 | 15 | adantlr | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 17 | oveq2 | ⊢ ( 𝑥 = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) → ( 𝑋 · 𝑥 ) = ( 𝑋 · ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) | |
| 18 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) | |
| 19 | ovex | ⊢ ( 𝑋 · ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ∈ V | |
| 20 | 17 18 19 | fvmpt | ⊢ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝑋 · ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
| 21 | 16 20 | syl | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝑋 · ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝑋 · 𝑥 ) = ( 𝑋 · 𝑎 ) ) | |
| 23 | ovex | ⊢ ( 𝑋 · 𝑎 ) ∈ V | |
| 24 | 22 18 23 | fvmpt | ⊢ ( 𝑎 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑎 ) = ( 𝑋 · 𝑎 ) ) |
| 25 | oveq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝑋 · 𝑥 ) = ( 𝑋 · 𝑏 ) ) | |
| 26 | ovex | ⊢ ( 𝑋 · 𝑏 ) ∈ V | |
| 27 | 25 18 26 | fvmpt | ⊢ ( 𝑏 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑏 ) = ( 𝑋 · 𝑏 ) ) |
| 28 | 24 27 | oveqan12d | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑏 ) ) = ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑏 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑏 ) ) = ( ( 𝑋 · 𝑎 ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑏 ) ) ) |
| 30 | 13 21 29 | 3eqtr4d | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑏 ) ) ) |
| 31 | 30 | ralrimivva | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑏 ) ) ) |
| 32 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 33 | 1 32 | srg0cl | ⊢ ( 𝑅 ∈ SRing → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 34 | 33 | adantr | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 35 | oveq2 | ⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝑋 · 𝑥 ) = ( 𝑋 · ( 0g ‘ 𝑅 ) ) ) | |
| 36 | ovex | ⊢ ( 𝑋 · ( 0g ‘ 𝑅 ) ) ∈ V | |
| 37 | 35 18 36 | fvmpt | ⊢ ( ( 0g ‘ 𝑅 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 0g ‘ 𝑅 ) ) = ( 𝑋 · ( 0g ‘ 𝑅 ) ) ) |
| 38 | 34 37 | syl | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 0g ‘ 𝑅 ) ) = ( 𝑋 · ( 0g ‘ 𝑅 ) ) ) |
| 39 | 1 2 32 | srgrz | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 40 | 38 39 | eqtrd | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 41 | 8 31 40 | 3jca | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑏 ) ) ∧ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 42 | 1 1 10 10 32 32 | ismhm | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ↔ ( ( 𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd ) ∧ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑏 ) ) ∧ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 43 | 5 41 42 | sylanbrc | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) |