This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringlghm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringlghm.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | ringlghm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlghm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringlghm.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 4 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 6 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 · 𝑥 ) ∈ 𝐵 ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 · 𝑥 ) ∈ 𝐵 ) |
| 8 | 7 | fmpttd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) : 𝐵 ⟶ 𝐵 ) |
| 9 | 3anass | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) | |
| 10 | 1 3 2 | ringdi | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑋 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑋 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑧 ) ) ) |
| 11 | 9 10 | sylan2br | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) → ( 𝑋 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑋 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑧 ) ) ) |
| 12 | 11 | anassrs | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑋 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑋 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑧 ) ) ) |
| 13 | 1 3 | ringacl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
| 14 | 13 | 3expb | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
| 15 | 14 | adantlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
| 16 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) → ( 𝑋 · 𝑥 ) = ( 𝑋 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) | |
| 17 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) | |
| 18 | ovex | ⊢ ( 𝑋 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ∈ V | |
| 19 | 16 17 18 | fvmpt | ⊢ ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( 𝑋 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 20 | 15 19 | syl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( 𝑋 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 21 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑋 · 𝑥 ) = ( 𝑋 · 𝑦 ) ) | |
| 22 | ovex | ⊢ ( 𝑋 · 𝑦 ) ∈ V | |
| 23 | 21 17 22 | fvmpt | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑦 ) = ( 𝑋 · 𝑦 ) ) |
| 24 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑋 · 𝑥 ) = ( 𝑋 · 𝑧 ) ) | |
| 25 | ovex | ⊢ ( 𝑋 · 𝑧 ) ∈ V | |
| 26 | 24 17 25 | fvmpt | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑧 ) = ( 𝑋 · 𝑧 ) ) |
| 27 | 23 26 | oveqan12d | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝑋 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑧 ) ) ) |
| 28 | 27 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝑋 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑋 · 𝑧 ) ) ) |
| 29 | 12 20 28 | 3eqtr4d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑦 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 30 | 1 1 3 3 5 5 8 29 | isghmd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 · 𝑥 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |