This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringlghm . (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srglmhm.b | |- B = ( Base ` R ) |
|
| srglmhm.t | |- .x. = ( .r ` R ) |
||
| Assertion | srglmhm | |- ( ( R e. SRing /\ X e. B ) -> ( x e. B |-> ( X .x. x ) ) e. ( R MndHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srglmhm.b | |- B = ( Base ` R ) |
|
| 2 | srglmhm.t | |- .x. = ( .r ` R ) |
|
| 3 | srgmnd | |- ( R e. SRing -> R e. Mnd ) |
|
| 4 | 3 3 | jca | |- ( R e. SRing -> ( R e. Mnd /\ R e. Mnd ) ) |
| 5 | 4 | adantr | |- ( ( R e. SRing /\ X e. B ) -> ( R e. Mnd /\ R e. Mnd ) ) |
| 6 | 1 2 | srgcl | |- ( ( R e. SRing /\ X e. B /\ x e. B ) -> ( X .x. x ) e. B ) |
| 7 | 6 | 3expa | |- ( ( ( R e. SRing /\ X e. B ) /\ x e. B ) -> ( X .x. x ) e. B ) |
| 8 | 7 | fmpttd | |- ( ( R e. SRing /\ X e. B ) -> ( x e. B |-> ( X .x. x ) ) : B --> B ) |
| 9 | 3anass | |- ( ( X e. B /\ a e. B /\ b e. B ) <-> ( X e. B /\ ( a e. B /\ b e. B ) ) ) |
|
| 10 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 11 | 1 10 2 | srgdi | |- ( ( R e. SRing /\ ( X e. B /\ a e. B /\ b e. B ) ) -> ( X .x. ( a ( +g ` R ) b ) ) = ( ( X .x. a ) ( +g ` R ) ( X .x. b ) ) ) |
| 12 | 9 11 | sylan2br | |- ( ( R e. SRing /\ ( X e. B /\ ( a e. B /\ b e. B ) ) ) -> ( X .x. ( a ( +g ` R ) b ) ) = ( ( X .x. a ) ( +g ` R ) ( X .x. b ) ) ) |
| 13 | 12 | anassrs | |- ( ( ( R e. SRing /\ X e. B ) /\ ( a e. B /\ b e. B ) ) -> ( X .x. ( a ( +g ` R ) b ) ) = ( ( X .x. a ) ( +g ` R ) ( X .x. b ) ) ) |
| 14 | 1 10 | srgacl | |- ( ( R e. SRing /\ a e. B /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) |
| 15 | 14 | 3expb | |- ( ( R e. SRing /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` R ) b ) e. B ) |
| 16 | 15 | adantlr | |- ( ( ( R e. SRing /\ X e. B ) /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` R ) b ) e. B ) |
| 17 | oveq2 | |- ( x = ( a ( +g ` R ) b ) -> ( X .x. x ) = ( X .x. ( a ( +g ` R ) b ) ) ) |
|
| 18 | eqid | |- ( x e. B |-> ( X .x. x ) ) = ( x e. B |-> ( X .x. x ) ) |
|
| 19 | ovex | |- ( X .x. ( a ( +g ` R ) b ) ) e. _V |
|
| 20 | 17 18 19 | fvmpt | |- ( ( a ( +g ` R ) b ) e. B -> ( ( x e. B |-> ( X .x. x ) ) ` ( a ( +g ` R ) b ) ) = ( X .x. ( a ( +g ` R ) b ) ) ) |
| 21 | 16 20 | syl | |- ( ( ( R e. SRing /\ X e. B ) /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( X .x. x ) ) ` ( a ( +g ` R ) b ) ) = ( X .x. ( a ( +g ` R ) b ) ) ) |
| 22 | oveq2 | |- ( x = a -> ( X .x. x ) = ( X .x. a ) ) |
|
| 23 | ovex | |- ( X .x. a ) e. _V |
|
| 24 | 22 18 23 | fvmpt | |- ( a e. B -> ( ( x e. B |-> ( X .x. x ) ) ` a ) = ( X .x. a ) ) |
| 25 | oveq2 | |- ( x = b -> ( X .x. x ) = ( X .x. b ) ) |
|
| 26 | ovex | |- ( X .x. b ) e. _V |
|
| 27 | 25 18 26 | fvmpt | |- ( b e. B -> ( ( x e. B |-> ( X .x. x ) ) ` b ) = ( X .x. b ) ) |
| 28 | 24 27 | oveqan12d | |- ( ( a e. B /\ b e. B ) -> ( ( ( x e. B |-> ( X .x. x ) ) ` a ) ( +g ` R ) ( ( x e. B |-> ( X .x. x ) ) ` b ) ) = ( ( X .x. a ) ( +g ` R ) ( X .x. b ) ) ) |
| 29 | 28 | adantl | |- ( ( ( R e. SRing /\ X e. B ) /\ ( a e. B /\ b e. B ) ) -> ( ( ( x e. B |-> ( X .x. x ) ) ` a ) ( +g ` R ) ( ( x e. B |-> ( X .x. x ) ) ` b ) ) = ( ( X .x. a ) ( +g ` R ) ( X .x. b ) ) ) |
| 30 | 13 21 29 | 3eqtr4d | |- ( ( ( R e. SRing /\ X e. B ) /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( X .x. x ) ) ` ( a ( +g ` R ) b ) ) = ( ( ( x e. B |-> ( X .x. x ) ) ` a ) ( +g ` R ) ( ( x e. B |-> ( X .x. x ) ) ` b ) ) ) |
| 31 | 30 | ralrimivva | |- ( ( R e. SRing /\ X e. B ) -> A. a e. B A. b e. B ( ( x e. B |-> ( X .x. x ) ) ` ( a ( +g ` R ) b ) ) = ( ( ( x e. B |-> ( X .x. x ) ) ` a ) ( +g ` R ) ( ( x e. B |-> ( X .x. x ) ) ` b ) ) ) |
| 32 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 33 | 1 32 | srg0cl | |- ( R e. SRing -> ( 0g ` R ) e. B ) |
| 34 | 33 | adantr | |- ( ( R e. SRing /\ X e. B ) -> ( 0g ` R ) e. B ) |
| 35 | oveq2 | |- ( x = ( 0g ` R ) -> ( X .x. x ) = ( X .x. ( 0g ` R ) ) ) |
|
| 36 | ovex | |- ( X .x. ( 0g ` R ) ) e. _V |
|
| 37 | 35 18 36 | fvmpt | |- ( ( 0g ` R ) e. B -> ( ( x e. B |-> ( X .x. x ) ) ` ( 0g ` R ) ) = ( X .x. ( 0g ` R ) ) ) |
| 38 | 34 37 | syl | |- ( ( R e. SRing /\ X e. B ) -> ( ( x e. B |-> ( X .x. x ) ) ` ( 0g ` R ) ) = ( X .x. ( 0g ` R ) ) ) |
| 39 | 1 2 32 | srgrz | |- ( ( R e. SRing /\ X e. B ) -> ( X .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 40 | 38 39 | eqtrd | |- ( ( R e. SRing /\ X e. B ) -> ( ( x e. B |-> ( X .x. x ) ) ` ( 0g ` R ) ) = ( 0g ` R ) ) |
| 41 | 8 31 40 | 3jca | |- ( ( R e. SRing /\ X e. B ) -> ( ( x e. B |-> ( X .x. x ) ) : B --> B /\ A. a e. B A. b e. B ( ( x e. B |-> ( X .x. x ) ) ` ( a ( +g ` R ) b ) ) = ( ( ( x e. B |-> ( X .x. x ) ) ` a ) ( +g ` R ) ( ( x e. B |-> ( X .x. x ) ) ` b ) ) /\ ( ( x e. B |-> ( X .x. x ) ) ` ( 0g ` R ) ) = ( 0g ` R ) ) ) |
| 42 | 1 1 10 10 32 32 | ismhm | |- ( ( x e. B |-> ( X .x. x ) ) e. ( R MndHom R ) <-> ( ( R e. Mnd /\ R e. Mnd ) /\ ( ( x e. B |-> ( X .x. x ) ) : B --> B /\ A. a e. B A. b e. B ( ( x e. B |-> ( X .x. x ) ) ` ( a ( +g ` R ) b ) ) = ( ( ( x e. B |-> ( X .x. x ) ) ` a ) ( +g ` R ) ( ( x e. B |-> ( X .x. x ) ) ` b ) ) /\ ( ( x e. B |-> ( X .x. x ) ) ` ( 0g ` R ) ) = ( 0g ` R ) ) ) ) |
| 43 | 5 41 42 | sylanbrc | |- ( ( R e. SRing /\ X e. B ) -> ( x e. B |-> ( X .x. x ) ) e. ( R MndHom R ) ) |