This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010) (Revised by AV, 25-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srg1zr.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srg1zr.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| srg1zr.t | ⊢ ∗ = ( .r ‘ 𝑅 ) | ||
| Assertion | srg1zr | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 = { 𝑍 } ↔ ( + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ∧ ∗ = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srg1zr.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srg1zr.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 3 | srg1zr.t | ⊢ ∗ = ( .r ‘ 𝑅 ) | |
| 4 | pm4.24 | ⊢ ( 𝐵 = { 𝑍 } ↔ ( 𝐵 = { 𝑍 } ∧ 𝐵 = { 𝑍 } ) ) | |
| 5 | srgmnd | ⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) → 𝑅 ∈ Mnd ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → 𝑅 ∈ Mnd ) |
| 8 | mndmgm | ⊢ ( 𝑅 ∈ Mnd → 𝑅 ∈ Mgm ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → 𝑅 ∈ Mgm ) |
| 10 | simpr | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → 𝑍 ∈ 𝐵 ) | |
| 11 | simpl2 | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → + Fn ( 𝐵 × 𝐵 ) ) | |
| 12 | 1 2 | mgmb1mgm1 | ⊢ ( ( 𝑅 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn ( 𝐵 × 𝐵 ) ) → ( 𝐵 = { 𝑍 } ↔ + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 = { 𝑍 } ↔ + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) |
| 14 | simpl1 | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → 𝑅 ∈ SRing ) | |
| 15 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 16 | 15 | srgmgp | ⊢ ( 𝑅 ∈ SRing → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 17 | mndmgm | ⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → ( mulGrp ‘ 𝑅 ) ∈ Mgm ) | |
| 18 | 14 16 17 | 3syl | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( mulGrp ‘ 𝑅 ) ∈ Mgm ) |
| 19 | 15 3 | mgpplusg | ⊢ ∗ = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 20 | 19 | fneq1i | ⊢ ( ∗ Fn ( 𝐵 × 𝐵 ) ↔ ( +g ‘ ( mulGrp ‘ 𝑅 ) ) Fn ( 𝐵 × 𝐵 ) ) |
| 21 | 20 | biimpi | ⊢ ( ∗ Fn ( 𝐵 × 𝐵 ) → ( +g ‘ ( mulGrp ‘ 𝑅 ) ) Fn ( 𝐵 × 𝐵 ) ) |
| 22 | 21 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) → ( +g ‘ ( mulGrp ‘ 𝑅 ) ) Fn ( 𝐵 × 𝐵 ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( +g ‘ ( mulGrp ‘ 𝑅 ) ) Fn ( 𝐵 × 𝐵 ) ) |
| 24 | 15 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 25 | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 26 | 24 25 | mgmb1mgm1 | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ ( +g ‘ ( mulGrp ‘ 𝑅 ) ) Fn ( 𝐵 × 𝐵 ) ) → ( 𝐵 = { 𝑍 } ↔ ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) |
| 27 | 18 10 23 26 | syl3anc | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 = { 𝑍 } ↔ ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) |
| 28 | 19 | eqcomi | ⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = ∗ |
| 29 | 28 | a1i | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = ∗ ) |
| 30 | 29 | eqeq1d | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( ( +g ‘ ( mulGrp ‘ 𝑅 ) ) = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ↔ ∗ = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) |
| 31 | 27 30 | bitrd | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 = { 𝑍 } ↔ ∗ = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) |
| 32 | 13 31 | anbi12d | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝐵 = { 𝑍 } ∧ 𝐵 = { 𝑍 } ) ↔ ( + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ∧ ∗ = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) ) |
| 33 | 4 32 | bitrid | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 = { 𝑍 } ↔ ( + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ∧ ∗ = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) ) |