This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010) (Revised by AV, 25-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srg1zr.b | |- B = ( Base ` R ) |
|
| srg1zr.p | |- .+ = ( +g ` R ) |
||
| srg1zr.t | |- .* = ( .r ` R ) |
||
| Assertion | srg1zr | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B = { Z } <-> ( .+ = { <. <. Z , Z >. , Z >. } /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srg1zr.b | |- B = ( Base ` R ) |
|
| 2 | srg1zr.p | |- .+ = ( +g ` R ) |
|
| 3 | srg1zr.t | |- .* = ( .r ` R ) |
|
| 4 | pm4.24 | |- ( B = { Z } <-> ( B = { Z } /\ B = { Z } ) ) |
|
| 5 | srgmnd | |- ( R e. SRing -> R e. Mnd ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) -> R e. Mnd ) |
| 7 | 6 | adantr | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> R e. Mnd ) |
| 8 | mndmgm | |- ( R e. Mnd -> R e. Mgm ) |
|
| 9 | 7 8 | syl | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> R e. Mgm ) |
| 10 | simpr | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> Z e. B ) |
|
| 11 | simpl2 | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> .+ Fn ( B X. B ) ) |
|
| 12 | 1 2 | mgmb1mgm1 | |- ( ( R e. Mgm /\ Z e. B /\ .+ Fn ( B X. B ) ) -> ( B = { Z } <-> .+ = { <. <. Z , Z >. , Z >. } ) ) |
| 13 | 9 10 11 12 | syl3anc | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B = { Z } <-> .+ = { <. <. Z , Z >. , Z >. } ) ) |
| 14 | simpl1 | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> R e. SRing ) |
|
| 15 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 16 | 15 | srgmgp | |- ( R e. SRing -> ( mulGrp ` R ) e. Mnd ) |
| 17 | mndmgm | |- ( ( mulGrp ` R ) e. Mnd -> ( mulGrp ` R ) e. Mgm ) |
|
| 18 | 14 16 17 | 3syl | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( mulGrp ` R ) e. Mgm ) |
| 19 | 15 3 | mgpplusg | |- .* = ( +g ` ( mulGrp ` R ) ) |
| 20 | 19 | fneq1i | |- ( .* Fn ( B X. B ) <-> ( +g ` ( mulGrp ` R ) ) Fn ( B X. B ) ) |
| 21 | 20 | biimpi | |- ( .* Fn ( B X. B ) -> ( +g ` ( mulGrp ` R ) ) Fn ( B X. B ) ) |
| 22 | 21 | 3ad2ant3 | |- ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) -> ( +g ` ( mulGrp ` R ) ) Fn ( B X. B ) ) |
| 23 | 22 | adantr | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( +g ` ( mulGrp ` R ) ) Fn ( B X. B ) ) |
| 24 | 15 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 25 | eqid | |- ( +g ` ( mulGrp ` R ) ) = ( +g ` ( mulGrp ` R ) ) |
|
| 26 | 24 25 | mgmb1mgm1 | |- ( ( ( mulGrp ` R ) e. Mgm /\ Z e. B /\ ( +g ` ( mulGrp ` R ) ) Fn ( B X. B ) ) -> ( B = { Z } <-> ( +g ` ( mulGrp ` R ) ) = { <. <. Z , Z >. , Z >. } ) ) |
| 27 | 18 10 23 26 | syl3anc | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B = { Z } <-> ( +g ` ( mulGrp ` R ) ) = { <. <. Z , Z >. , Z >. } ) ) |
| 28 | 19 | eqcomi | |- ( +g ` ( mulGrp ` R ) ) = .* |
| 29 | 28 | a1i | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( +g ` ( mulGrp ` R ) ) = .* ) |
| 30 | 29 | eqeq1d | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( ( +g ` ( mulGrp ` R ) ) = { <. <. Z , Z >. , Z >. } <-> .* = { <. <. Z , Z >. , Z >. } ) ) |
| 31 | 27 30 | bitrd | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B = { Z } <-> .* = { <. <. Z , Z >. , Z >. } ) ) |
| 32 | 13 31 | anbi12d | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( ( B = { Z } /\ B = { Z } ) <-> ( .+ = { <. <. Z , Z >. , Z >. } /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) |
| 33 | 4 32 | bitrid | |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) /\ Z e. B ) -> ( B = { Z } <-> ( .+ = { <. <. Z , Z >. , Z >. } /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) |