This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010) (Revised by AV, 25-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srg1zr.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srg1zr.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| srg1zr.t | ⊢ ∗ = ( .r ‘ 𝑅 ) | ||
| srgen1zr.p | ⊢ 𝑍 = ( 0g ‘ 𝑅 ) | ||
| Assertion | srgen1zr | ⊢ ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) → ( 𝐵 ≈ 1o ↔ ( + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ∧ ∗ = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srg1zr.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srg1zr.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 3 | srg1zr.t | ⊢ ∗ = ( .r ‘ 𝑅 ) | |
| 4 | srgen1zr.p | ⊢ 𝑍 = ( 0g ‘ 𝑅 ) | |
| 5 | 1 4 | srg0cl | ⊢ ( 𝑅 ∈ SRing → 𝑍 ∈ 𝐵 ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
| 7 | en1eqsnbi | ⊢ ( 𝑍 ∈ 𝐵 → ( 𝐵 ≈ 1o ↔ 𝐵 = { 𝑍 } ) ) | |
| 8 | 7 | adantl | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 ≈ 1o ↔ 𝐵 = { 𝑍 } ) ) |
| 9 | 1 2 3 | srg1zr | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 = { 𝑍 } ↔ ( + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ∧ ∗ = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) ) |
| 10 | 8 9 | bitrd | ⊢ ( ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 ≈ 1o ↔ ( + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ∧ ∗ = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) ) |
| 11 | 6 10 | mpdan | ⊢ ( ( 𝑅 ∈ SRing ∧ + Fn ( 𝐵 × 𝐵 ) ∧ ∗ Fn ( 𝐵 × 𝐵 ) ) → ( 𝐵 ≈ 1o ↔ ( + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ∧ ∗ = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) ) |