This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020) (Revised by AV, 7-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgmb1mgm1.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| mgmb1mgm1.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| Assertion | mgmb1mgm1 | ⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn ( 𝐵 × 𝐵 ) ) → ( 𝐵 = { 𝑍 } ↔ + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmb1mgm1.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | mgmb1mgm1.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( +𝑓 ‘ 𝑀 ) = ( +𝑓 ‘ 𝑀 ) | |
| 4 | 1 2 3 | plusfeq | ⊢ ( + Fn ( 𝐵 × 𝐵 ) → ( +𝑓 ‘ 𝑀 ) = + ) |
| 5 | 1 3 | mgmplusf | ⊢ ( 𝑀 ∈ Mgm → ( +𝑓 ‘ 𝑀 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 6 | feq1 | ⊢ ( ( +𝑓 ‘ 𝑀 ) = + → ( ( +𝑓 ‘ 𝑀 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ↔ + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) ) | |
| 7 | 5 6 | imbitrid | ⊢ ( ( +𝑓 ‘ 𝑀 ) = + → ( 𝑀 ∈ Mgm → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) ) |
| 8 | 4 7 | syl | ⊢ ( + Fn ( 𝐵 × 𝐵 ) → ( 𝑀 ∈ Mgm → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) ) |
| 9 | 8 | impcom | ⊢ ( ( 𝑀 ∈ Mgm ∧ + Fn ( 𝐵 × 𝐵 ) ) → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn ( 𝐵 × 𝐵 ) ) → + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 11 | simp2 | ⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn ( 𝐵 × 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 12 | intopsn | ⊢ ( ( + : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐵 = { 𝑍 } ↔ + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn ( 𝐵 × 𝐵 ) ) → ( 𝐵 = { 𝑍 } ↔ + = { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } ) ) |