This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence and uniqueness for the real square root function. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resqreu | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) | |
| 2 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → 𝑥 ∈ ℂ ) |
| 4 | simprr | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → ( 𝑥 ↑ 2 ) = 𝐴 ) | |
| 5 | rere | ⊢ ( 𝑥 ∈ ℝ → ( ℜ ‘ 𝑥 ) = 𝑥 ) | |
| 6 | 5 | breq2d | ⊢ ( 𝑥 ∈ ℝ → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ 𝑥 ) ) |
| 7 | 6 | biimpar | ⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → 0 ≤ ( ℜ ‘ 𝑥 ) ) |
| 8 | 7 | adantrr | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → 0 ≤ ( ℜ ‘ 𝑥 ) ) |
| 9 | rennim | ⊢ ( 𝑥 ∈ ℝ → ( i · 𝑥 ) ∉ ℝ+ ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → ( i · 𝑥 ) ∉ ℝ+ ) |
| 11 | 4 8 10 | 3jca | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 12 | 3 11 | jca | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) → ( 𝑥 ∈ ℂ ∧ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
| 13 | 12 | reximi2 | ⊢ ( ∃ 𝑥 ∈ ℝ ( 0 ≤ 𝑥 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 14 | 1 13 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 15 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 17 | sqrmo | ⊢ ( 𝐴 ∈ ℂ → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 19 | reu5 | ⊢ ( ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) | |
| 20 | 14 18 19 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |