This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancel one factor of a square in a <_ comparison. Unlike lemul1 , the common factor A may be zero. (Contributed by NM, 17-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqlecan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 4 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 5 | sqval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 7 | 6 | breq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐴 ) ) ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐴 ) ) ) |
| 9 | lemul1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐴 ) ) ) | |
| 10 | 8 9 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) |
| 11 | 10 | 3exp | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
| 12 | 11 | exp4a | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) ) |
| 13 | 12 | pm2.43a | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 0 < 𝐴 → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
| 14 | 13 | adantrd | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( 0 < 𝐴 → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
| 15 | 14 | com23 | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
| 16 | sq0 | ⊢ ( 0 ↑ 2 ) = 0 | |
| 17 | 0le0 | ⊢ 0 ≤ 0 | |
| 18 | 16 17 | eqbrtri | ⊢ ( 0 ↑ 2 ) ≤ 0 |
| 19 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 20 | 19 | mul01d | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 · 0 ) = 0 ) |
| 21 | 18 20 | breqtrrid | ⊢ ( 𝐵 ∈ ℝ → ( 0 ↑ 2 ) ≤ ( 𝐵 · 0 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 0 = 𝐴 ∧ 𝐵 ∈ ℝ ) → ( 0 ↑ 2 ) ≤ ( 𝐵 · 0 ) ) |
| 23 | oveq1 | ⊢ ( 0 = 𝐴 → ( 0 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 24 | oveq2 | ⊢ ( 0 = 𝐴 → ( 𝐵 · 0 ) = ( 𝐵 · 𝐴 ) ) | |
| 25 | 23 24 | breq12d | ⊢ ( 0 = 𝐴 → ( ( 0 ↑ 2 ) ≤ ( 𝐵 · 0 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ) ) |
| 26 | 25 | adantr | ⊢ ( ( 0 = 𝐴 ∧ 𝐵 ∈ ℝ ) → ( ( 0 ↑ 2 ) ≤ ( 𝐵 · 0 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ) ) |
| 27 | 22 26 | mpbid | ⊢ ( ( 0 = 𝐴 ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ) |
| 28 | 27 | adantrr | ⊢ ( ( 0 = 𝐴 ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ) |
| 29 | breq1 | ⊢ ( 0 = 𝐴 → ( 0 ≤ 𝐵 ↔ 𝐴 ≤ 𝐵 ) ) | |
| 30 | 29 | biimpa | ⊢ ( ( 0 = 𝐴 ∧ 0 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 31 | 30 | adantrl | ⊢ ( ( 0 = 𝐴 ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐴 ≤ 𝐵 ) |
| 32 | 28 31 | 2thd | ⊢ ( ( 0 = 𝐴 ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) |
| 33 | 32 | ex | ⊢ ( 0 = 𝐴 → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) |
| 34 | 33 | a1i | ⊢ ( 𝐴 ∈ ℝ → ( 0 = 𝐴 → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
| 35 | 15 34 | jaod | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
| 36 | 3 35 | sylbid | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) ) ) |
| 37 | 36 | imp31 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 · 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) |