This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancel one factor of a square in a <_ comparison. Unlike lemul1 , the common factor A may be zero. (Contributed by NM, 17-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqlecan | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | leloe | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 4 | recn | |- ( A e. RR -> A e. CC ) |
|
| 5 | sqval | |- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
|
| 6 | 4 5 | syl | |- ( A e. RR -> ( A ^ 2 ) = ( A x. A ) ) |
| 7 | 6 | breq1d | |- ( A e. RR -> ( ( A ^ 2 ) <_ ( B x. A ) <-> ( A x. A ) <_ ( B x. A ) ) ) |
| 8 | 7 | 3ad2ant1 | |- ( ( A e. RR /\ B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( A ^ 2 ) <_ ( B x. A ) <-> ( A x. A ) <_ ( B x. A ) ) ) |
| 9 | lemul1 | |- ( ( A e. RR /\ B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( A <_ B <-> ( A x. A ) <_ ( B x. A ) ) ) |
|
| 10 | 8 9 | bitr4d | |- ( ( A e. RR /\ B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) |
| 11 | 10 | 3exp | |- ( A e. RR -> ( B e. RR -> ( ( A e. RR /\ 0 < A ) -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) ) ) |
| 12 | 11 | exp4a | |- ( A e. RR -> ( B e. RR -> ( A e. RR -> ( 0 < A -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) ) ) ) |
| 13 | 12 | pm2.43a | |- ( A e. RR -> ( B e. RR -> ( 0 < A -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) ) ) |
| 14 | 13 | adantrd | |- ( A e. RR -> ( ( B e. RR /\ 0 <_ B ) -> ( 0 < A -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) ) ) |
| 15 | 14 | com23 | |- ( A e. RR -> ( 0 < A -> ( ( B e. RR /\ 0 <_ B ) -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) ) ) |
| 16 | sq0 | |- ( 0 ^ 2 ) = 0 |
|
| 17 | 0le0 | |- 0 <_ 0 |
|
| 18 | 16 17 | eqbrtri | |- ( 0 ^ 2 ) <_ 0 |
| 19 | recn | |- ( B e. RR -> B e. CC ) |
|
| 20 | 19 | mul01d | |- ( B e. RR -> ( B x. 0 ) = 0 ) |
| 21 | 18 20 | breqtrrid | |- ( B e. RR -> ( 0 ^ 2 ) <_ ( B x. 0 ) ) |
| 22 | 21 | adantl | |- ( ( 0 = A /\ B e. RR ) -> ( 0 ^ 2 ) <_ ( B x. 0 ) ) |
| 23 | oveq1 | |- ( 0 = A -> ( 0 ^ 2 ) = ( A ^ 2 ) ) |
|
| 24 | oveq2 | |- ( 0 = A -> ( B x. 0 ) = ( B x. A ) ) |
|
| 25 | 23 24 | breq12d | |- ( 0 = A -> ( ( 0 ^ 2 ) <_ ( B x. 0 ) <-> ( A ^ 2 ) <_ ( B x. A ) ) ) |
| 26 | 25 | adantr | |- ( ( 0 = A /\ B e. RR ) -> ( ( 0 ^ 2 ) <_ ( B x. 0 ) <-> ( A ^ 2 ) <_ ( B x. A ) ) ) |
| 27 | 22 26 | mpbid | |- ( ( 0 = A /\ B e. RR ) -> ( A ^ 2 ) <_ ( B x. A ) ) |
| 28 | 27 | adantrr | |- ( ( 0 = A /\ ( B e. RR /\ 0 <_ B ) ) -> ( A ^ 2 ) <_ ( B x. A ) ) |
| 29 | breq1 | |- ( 0 = A -> ( 0 <_ B <-> A <_ B ) ) |
|
| 30 | 29 | biimpa | |- ( ( 0 = A /\ 0 <_ B ) -> A <_ B ) |
| 31 | 30 | adantrl | |- ( ( 0 = A /\ ( B e. RR /\ 0 <_ B ) ) -> A <_ B ) |
| 32 | 28 31 | 2thd | |- ( ( 0 = A /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) |
| 33 | 32 | ex | |- ( 0 = A -> ( ( B e. RR /\ 0 <_ B ) -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) ) |
| 34 | 33 | a1i | |- ( A e. RR -> ( 0 = A -> ( ( B e. RR /\ 0 <_ B ) -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) ) ) |
| 35 | 15 34 | jaod | |- ( A e. RR -> ( ( 0 < A \/ 0 = A ) -> ( ( B e. RR /\ 0 <_ B ) -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) ) ) |
| 36 | 3 35 | sylbid | |- ( A e. RR -> ( 0 <_ A -> ( ( B e. RR /\ 0 <_ B ) -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) ) ) |
| 37 | 36 | imp31 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) <_ ( B x. A ) <-> A <_ B ) ) |