This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqf11 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ↔ 𝑝 ∥ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) | |
| 2 | nnnn0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℕ0 ) | |
| 3 | pc11 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
| 5 | 4 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
| 6 | eleq1 | ⊢ ( ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ) | |
| 7 | dfbi3 | ⊢ ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ↔ ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ∨ ( ¬ ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ) ) | |
| 8 | sqfpc | ⊢ ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ≤ 1 ) | |
| 9 | 8 | ad4ant124 | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ≤ 1 ) |
| 10 | nnle1eq1 | ⊢ ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ → ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ↔ ( 𝑝 pCnt 𝐴 ) = 1 ) ) | |
| 11 | 9 10 | syl5ibcom | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ → ( 𝑝 pCnt 𝐴 ) = 1 ) ) |
| 12 | simprl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → 𝐵 ∈ ℕ ) | |
| 13 | 12 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℕ ) |
| 14 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( μ ‘ 𝐵 ) ≠ 0 ) | |
| 15 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) | |
| 16 | sqfpc | ⊢ ( ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ≤ 1 ) | |
| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ≤ 1 ) |
| 18 | nnle1eq1 | ⊢ ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ → ( ( 𝑝 pCnt 𝐵 ) ≤ 1 ↔ ( 𝑝 pCnt 𝐵 ) = 1 ) ) | |
| 19 | 17 18 | syl5ibcom | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ → ( 𝑝 pCnt 𝐵 ) = 1 ) ) |
| 20 | 11 19 | anim12d | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) → ( ( 𝑝 pCnt 𝐴 ) = 1 ∧ ( 𝑝 pCnt 𝐵 ) = 1 ) ) ) |
| 21 | eqtr3 | ⊢ ( ( ( 𝑝 pCnt 𝐴 ) = 1 ∧ ( 𝑝 pCnt 𝐵 ) = 1 ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) | |
| 22 | 20 21 | syl6 | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
| 23 | id | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℙ ) | |
| 24 | simpll | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → 𝐴 ∈ ℕ ) | |
| 25 | pccl | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) | |
| 26 | 23 24 25 | syl2anr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 27 | elnn0 | ⊢ ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ↔ ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∨ ( 𝑝 pCnt 𝐴 ) = 0 ) ) | |
| 28 | 26 27 | sylib | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∨ ( 𝑝 pCnt 𝐴 ) = 0 ) ) |
| 29 | 28 | ord | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ¬ ( 𝑝 pCnt 𝐴 ) ∈ ℕ → ( 𝑝 pCnt 𝐴 ) = 0 ) ) |
| 30 | pccl | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℕ0 ) | |
| 31 | 23 12 30 | syl2anr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℕ0 ) |
| 32 | elnn0 | ⊢ ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ0 ↔ ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ ∨ ( 𝑝 pCnt 𝐵 ) = 0 ) ) | |
| 33 | 31 32 | sylib | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ ∨ ( 𝑝 pCnt 𝐵 ) = 0 ) ) |
| 34 | 33 | ord | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℕ → ( 𝑝 pCnt 𝐵 ) = 0 ) ) |
| 35 | 29 34 | anim12d | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ¬ ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) → ( ( 𝑝 pCnt 𝐴 ) = 0 ∧ ( 𝑝 pCnt 𝐵 ) = 0 ) ) ) |
| 36 | eqtr3 | ⊢ ( ( ( 𝑝 pCnt 𝐴 ) = 0 ∧ ( 𝑝 pCnt 𝐵 ) = 0 ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) | |
| 37 | 35 36 | syl6 | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ¬ ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
| 38 | 22 37 | jaod | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ∨ ( ¬ ( 𝑝 pCnt 𝐴 ) ∈ ℕ ∧ ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
| 39 | 7 38 | biimtrid | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
| 40 | 6 39 | impbid2 | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ) ) |
| 41 | pcelnn | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ 𝑝 ∥ 𝐴 ) ) | |
| 42 | 23 24 41 | syl2anr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ 𝑝 ∥ 𝐴 ) ) |
| 43 | pcelnn | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ ↔ 𝑝 ∥ 𝐵 ) ) | |
| 44 | 23 12 43 | syl2anr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐵 ) ∈ ℕ ↔ 𝑝 ∥ 𝐵 ) ) |
| 45 | 42 44 | bibi12d | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ ↔ ( 𝑝 pCnt 𝐵 ) ∈ ℕ ) ↔ ( 𝑝 ∥ 𝐴 ↔ 𝑝 ∥ 𝐵 ) ) ) |
| 46 | 40 45 | bitrd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( 𝑝 ∥ 𝐴 ↔ 𝑝 ∥ 𝐵 ) ) ) |
| 47 | 46 | ralbidva | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ↔ 𝑝 ∥ 𝐵 ) ) ) |
| 48 | 5 47 | bitrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ↔ 𝑝 ∥ 𝐵 ) ) ) |