This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Möbius function is a function into the integers. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muf | ⊢ μ : ℕ ⟶ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mu | ⊢ μ = ( 𝑥 ∈ ℕ ↦ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) ) | |
| 2 | 0z | ⊢ 0 ∈ ℤ | |
| 3 | neg1z | ⊢ - 1 ∈ ℤ | |
| 4 | prmdvdsfi | ⊢ ( 𝑥 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ∈ Fin ) | |
| 5 | hashcl | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ∈ ℕ0 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑥 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ∈ ℕ0 ) |
| 7 | zexpcl | ⊢ ( ( - 1 ∈ ℤ ∧ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ∈ ℕ0 ) → ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ∈ ℤ ) | |
| 8 | 3 6 7 | sylancr | ⊢ ( 𝑥 ∈ ℕ → ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ∈ ℤ ) |
| 9 | ifcl | ⊢ ( ( 0 ∈ ℤ ∧ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ∈ ℤ ) → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) ∈ ℤ ) | |
| 10 | 2 8 9 | sylancr | ⊢ ( 𝑥 ∈ ℕ → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) ∈ ℤ ) |
| 11 | 1 10 | fmpti | ⊢ μ : ℕ ⟶ ℤ |