This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqf11 | |- ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) -> ( A = B <-> A. p e. Prime ( p || A <-> p || B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 | |- ( A e. NN -> A e. NN0 ) |
|
| 2 | nnnn0 | |- ( B e. NN -> B e. NN0 ) |
|
| 3 | pc11 | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A = B <-> A. p e. Prime ( p pCnt A ) = ( p pCnt B ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. NN /\ B e. NN ) -> ( A = B <-> A. p e. Prime ( p pCnt A ) = ( p pCnt B ) ) ) |
| 5 | 4 | ad2ant2r | |- ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) -> ( A = B <-> A. p e. Prime ( p pCnt A ) = ( p pCnt B ) ) ) |
| 6 | eleq1 | |- ( ( p pCnt A ) = ( p pCnt B ) -> ( ( p pCnt A ) e. NN <-> ( p pCnt B ) e. NN ) ) |
|
| 7 | dfbi3 | |- ( ( ( p pCnt A ) e. NN <-> ( p pCnt B ) e. NN ) <-> ( ( ( p pCnt A ) e. NN /\ ( p pCnt B ) e. NN ) \/ ( -. ( p pCnt A ) e. NN /\ -. ( p pCnt B ) e. NN ) ) ) |
|
| 8 | sqfpc | |- ( ( A e. NN /\ ( mmu ` A ) =/= 0 /\ p e. Prime ) -> ( p pCnt A ) <_ 1 ) |
|
| 9 | 8 | ad4ant124 | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( p pCnt A ) <_ 1 ) |
| 10 | nnle1eq1 | |- ( ( p pCnt A ) e. NN -> ( ( p pCnt A ) <_ 1 <-> ( p pCnt A ) = 1 ) ) |
|
| 11 | 9 10 | syl5ibcom | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( p pCnt A ) e. NN -> ( p pCnt A ) = 1 ) ) |
| 12 | simprl | |- ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) -> B e. NN ) |
|
| 13 | 12 | adantr | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> B e. NN ) |
| 14 | simplrr | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( mmu ` B ) =/= 0 ) |
|
| 15 | simpr | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> p e. Prime ) |
|
| 16 | sqfpc | |- ( ( B e. NN /\ ( mmu ` B ) =/= 0 /\ p e. Prime ) -> ( p pCnt B ) <_ 1 ) |
|
| 17 | 13 14 15 16 | syl3anc | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( p pCnt B ) <_ 1 ) |
| 18 | nnle1eq1 | |- ( ( p pCnt B ) e. NN -> ( ( p pCnt B ) <_ 1 <-> ( p pCnt B ) = 1 ) ) |
|
| 19 | 17 18 | syl5ibcom | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( p pCnt B ) e. NN -> ( p pCnt B ) = 1 ) ) |
| 20 | 11 19 | anim12d | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( ( p pCnt A ) e. NN /\ ( p pCnt B ) e. NN ) -> ( ( p pCnt A ) = 1 /\ ( p pCnt B ) = 1 ) ) ) |
| 21 | eqtr3 | |- ( ( ( p pCnt A ) = 1 /\ ( p pCnt B ) = 1 ) -> ( p pCnt A ) = ( p pCnt B ) ) |
|
| 22 | 20 21 | syl6 | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( ( p pCnt A ) e. NN /\ ( p pCnt B ) e. NN ) -> ( p pCnt A ) = ( p pCnt B ) ) ) |
| 23 | id | |- ( p e. Prime -> p e. Prime ) |
|
| 24 | simpll | |- ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) -> A e. NN ) |
|
| 25 | pccl | |- ( ( p e. Prime /\ A e. NN ) -> ( p pCnt A ) e. NN0 ) |
|
| 26 | 23 24 25 | syl2anr | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( p pCnt A ) e. NN0 ) |
| 27 | elnn0 | |- ( ( p pCnt A ) e. NN0 <-> ( ( p pCnt A ) e. NN \/ ( p pCnt A ) = 0 ) ) |
|
| 28 | 26 27 | sylib | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( p pCnt A ) e. NN \/ ( p pCnt A ) = 0 ) ) |
| 29 | 28 | ord | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( -. ( p pCnt A ) e. NN -> ( p pCnt A ) = 0 ) ) |
| 30 | pccl | |- ( ( p e. Prime /\ B e. NN ) -> ( p pCnt B ) e. NN0 ) |
|
| 31 | 23 12 30 | syl2anr | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( p pCnt B ) e. NN0 ) |
| 32 | elnn0 | |- ( ( p pCnt B ) e. NN0 <-> ( ( p pCnt B ) e. NN \/ ( p pCnt B ) = 0 ) ) |
|
| 33 | 31 32 | sylib | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( p pCnt B ) e. NN \/ ( p pCnt B ) = 0 ) ) |
| 34 | 33 | ord | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( -. ( p pCnt B ) e. NN -> ( p pCnt B ) = 0 ) ) |
| 35 | 29 34 | anim12d | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( -. ( p pCnt A ) e. NN /\ -. ( p pCnt B ) e. NN ) -> ( ( p pCnt A ) = 0 /\ ( p pCnt B ) = 0 ) ) ) |
| 36 | eqtr3 | |- ( ( ( p pCnt A ) = 0 /\ ( p pCnt B ) = 0 ) -> ( p pCnt A ) = ( p pCnt B ) ) |
|
| 37 | 35 36 | syl6 | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( -. ( p pCnt A ) e. NN /\ -. ( p pCnt B ) e. NN ) -> ( p pCnt A ) = ( p pCnt B ) ) ) |
| 38 | 22 37 | jaod | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( ( ( p pCnt A ) e. NN /\ ( p pCnt B ) e. NN ) \/ ( -. ( p pCnt A ) e. NN /\ -. ( p pCnt B ) e. NN ) ) -> ( p pCnt A ) = ( p pCnt B ) ) ) |
| 39 | 7 38 | biimtrid | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( ( p pCnt A ) e. NN <-> ( p pCnt B ) e. NN ) -> ( p pCnt A ) = ( p pCnt B ) ) ) |
| 40 | 6 39 | impbid2 | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( p pCnt A ) = ( p pCnt B ) <-> ( ( p pCnt A ) e. NN <-> ( p pCnt B ) e. NN ) ) ) |
| 41 | pcelnn | |- ( ( p e. Prime /\ A e. NN ) -> ( ( p pCnt A ) e. NN <-> p || A ) ) |
|
| 42 | 23 24 41 | syl2anr | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( p pCnt A ) e. NN <-> p || A ) ) |
| 43 | pcelnn | |- ( ( p e. Prime /\ B e. NN ) -> ( ( p pCnt B ) e. NN <-> p || B ) ) |
|
| 44 | 23 12 43 | syl2anr | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( p pCnt B ) e. NN <-> p || B ) ) |
| 45 | 42 44 | bibi12d | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( ( p pCnt A ) e. NN <-> ( p pCnt B ) e. NN ) <-> ( p || A <-> p || B ) ) ) |
| 46 | 40 45 | bitrd | |- ( ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( p pCnt A ) = ( p pCnt B ) <-> ( p || A <-> p || B ) ) ) |
| 47 | 46 | ralbidva | |- ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) -> ( A. p e. Prime ( p pCnt A ) = ( p pCnt B ) <-> A. p e. Prime ( p || A <-> p || B ) ) ) |
| 48 | 5 47 | bitrd | |- ( ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) /\ ( B e. NN /\ ( mmu ` B ) =/= 0 ) ) -> ( A = B <-> A. p e. Prime ( p || A <-> p || B ) ) ) |