This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of Hilbert space is orthogonal to the span of the singleton of a projection onto its orthocomplement. (Contributed by NM, 4-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spansnpj.1 | |- A C_ ~H |
|
| spansnpj.2 | |- B e. ~H |
||
| Assertion | spansnpji | |- A C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnpj.1 | |- A C_ ~H |
|
| 2 | spansnpj.2 | |- B e. ~H |
|
| 3 | ococss | |- ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
|
| 4 | 1 3 | ax-mp | |- A C_ ( _|_ ` ( _|_ ` A ) ) |
| 5 | occl | |- ( A C_ ~H -> ( _|_ ` A ) e. CH ) |
|
| 6 | 1 5 | ax-mp | |- ( _|_ ` A ) e. CH |
| 7 | 6 | chssii | |- ( _|_ ` A ) C_ ~H |
| 8 | 6 2 | pjclii | |- ( ( projh ` ( _|_ ` A ) ) ` B ) e. ( _|_ ` A ) |
| 9 | snssi | |- ( ( ( projh ` ( _|_ ` A ) ) ` B ) e. ( _|_ ` A ) -> { ( ( projh ` ( _|_ ` A ) ) ` B ) } C_ ( _|_ ` A ) ) |
|
| 10 | 8 9 | ax-mp | |- { ( ( projh ` ( _|_ ` A ) ) ` B ) } C_ ( _|_ ` A ) |
| 11 | spanss | |- ( ( ( _|_ ` A ) C_ ~H /\ { ( ( projh ` ( _|_ ` A ) ) ` B ) } C_ ( _|_ ` A ) ) -> ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) C_ ( span ` ( _|_ ` A ) ) ) |
|
| 12 | 7 10 11 | mp2an | |- ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) C_ ( span ` ( _|_ ` A ) ) |
| 13 | 6 | chshii | |- ( _|_ ` A ) e. SH |
| 14 | spanid | |- ( ( _|_ ` A ) e. SH -> ( span ` ( _|_ ` A ) ) = ( _|_ ` A ) ) |
|
| 15 | 13 14 | ax-mp | |- ( span ` ( _|_ ` A ) ) = ( _|_ ` A ) |
| 16 | 12 15 | sseqtri | |- ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) C_ ( _|_ ` A ) |
| 17 | 6 2 | pjhclii | |- ( ( projh ` ( _|_ ` A ) ) ` B ) e. ~H |
| 18 | 17 | spansnchi | |- ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) e. CH |
| 19 | 18 6 | chsscon3i | |- ( ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) C_ ( _|_ ` A ) <-> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) ) |
| 20 | 16 19 | mpbi | |- ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 21 | 4 20 | sstri | |- A C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |