This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smores3 | ⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ∧ Ord 𝐵 ) → Smo ( 𝐴 ↾ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres | ⊢ dom ( 𝐴 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐴 ) | |
| 2 | incom | ⊢ ( 𝐵 ∩ dom 𝐴 ) = ( dom 𝐴 ∩ 𝐵 ) | |
| 3 | 1 2 | eqtri | ⊢ dom ( 𝐴 ↾ 𝐵 ) = ( dom 𝐴 ∩ 𝐵 ) |
| 4 | 3 | eleq2i | ⊢ ( 𝐶 ∈ dom ( 𝐴 ↾ 𝐵 ) ↔ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ) |
| 5 | smores | ⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ dom ( 𝐴 ↾ 𝐵 ) ) → Smo ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) ) | |
| 6 | 4 5 | sylan2br | ⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ) → Smo ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ∧ Ord 𝐵 ) → Smo ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) ) |
| 8 | elinel2 | ⊢ ( 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) → 𝐶 ∈ 𝐵 ) | |
| 9 | ordelss | ⊢ ( ( Ord 𝐵 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ⊆ 𝐵 ) | |
| 10 | 9 | ancoms | ⊢ ( ( 𝐶 ∈ 𝐵 ∧ Ord 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
| 11 | 8 10 | sylan | ⊢ ( ( 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ∧ Ord 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
| 12 | 11 | 3adant1 | ⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ∧ Ord 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
| 13 | resabs1 | ⊢ ( 𝐶 ⊆ 𝐵 → ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( 𝐴 ↾ 𝐶 ) ) | |
| 14 | smoeq | ⊢ ( ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( 𝐴 ↾ 𝐶 ) → ( Smo ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) ↔ Smo ( 𝐴 ↾ 𝐶 ) ) ) | |
| 15 | 12 13 14 | 3syl | ⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ∧ Ord 𝐵 ) → ( Smo ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) ↔ Smo ( 𝐴 ↾ 𝐶 ) ) ) |
| 16 | 7 15 | mpbid | ⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ∧ Ord 𝐵 ) → Smo ( 𝐴 ↾ 𝐶 ) ) |