This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smores2 | ⊢ ( ( Smo 𝐹 ∧ Ord 𝐴 ) → Smo ( 𝐹 ↾ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsmo2 | ⊢ ( Smo 𝐹 ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 2 | 1 | simp1bi | ⊢ ( Smo 𝐹 → 𝐹 : dom 𝐹 ⟶ On ) |
| 3 | 2 | ffund | ⊢ ( Smo 𝐹 → Fun 𝐹 ) |
| 4 | funres | ⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ 𝐴 ) ) | |
| 5 | 4 | funfnd | ⊢ ( Fun 𝐹 → ( 𝐹 ↾ 𝐴 ) Fn dom ( 𝐹 ↾ 𝐴 ) ) |
| 6 | 3 5 | syl | ⊢ ( Smo 𝐹 → ( 𝐹 ↾ 𝐴 ) Fn dom ( 𝐹 ↾ 𝐴 ) ) |
| 7 | df-ima | ⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) | |
| 8 | imassrn | ⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 | |
| 9 | 7 8 | eqsstrri | ⊢ ran ( 𝐹 ↾ 𝐴 ) ⊆ ran 𝐹 |
| 10 | 2 | frnd | ⊢ ( Smo 𝐹 → ran 𝐹 ⊆ On ) |
| 11 | 9 10 | sstrid | ⊢ ( Smo 𝐹 → ran ( 𝐹 ↾ 𝐴 ) ⊆ On ) |
| 12 | df-f | ⊢ ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ On ↔ ( ( 𝐹 ↾ 𝐴 ) Fn dom ( 𝐹 ↾ 𝐴 ) ∧ ran ( 𝐹 ↾ 𝐴 ) ⊆ On ) ) | |
| 13 | 6 11 12 | sylanbrc | ⊢ ( Smo 𝐹 → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ On ) |
| 14 | 13 | adantr | ⊢ ( ( Smo 𝐹 ∧ Ord 𝐴 ) → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ On ) |
| 15 | smodm | ⊢ ( Smo 𝐹 → Ord dom 𝐹 ) | |
| 16 | ordin | ⊢ ( ( Ord 𝐴 ∧ Ord dom 𝐹 ) → Ord ( 𝐴 ∩ dom 𝐹 ) ) | |
| 17 | dmres | ⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) | |
| 18 | ordeq | ⊢ ( dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) → ( Ord dom ( 𝐹 ↾ 𝐴 ) ↔ Ord ( 𝐴 ∩ dom 𝐹 ) ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( Ord dom ( 𝐹 ↾ 𝐴 ) ↔ Ord ( 𝐴 ∩ dom 𝐹 ) ) |
| 20 | 16 19 | sylibr | ⊢ ( ( Ord 𝐴 ∧ Ord dom 𝐹 ) → Ord dom ( 𝐹 ↾ 𝐴 ) ) |
| 21 | 20 | ancoms | ⊢ ( ( Ord dom 𝐹 ∧ Ord 𝐴 ) → Ord dom ( 𝐹 ↾ 𝐴 ) ) |
| 22 | 15 21 | sylan | ⊢ ( ( Smo 𝐹 ∧ Ord 𝐴 ) → Ord dom ( 𝐹 ↾ 𝐴 ) ) |
| 23 | resss | ⊢ ( 𝐹 ↾ 𝐴 ) ⊆ 𝐹 | |
| 24 | dmss | ⊢ ( ( 𝐹 ↾ 𝐴 ) ⊆ 𝐹 → dom ( 𝐹 ↾ 𝐴 ) ⊆ dom 𝐹 ) | |
| 25 | 23 24 | ax-mp | ⊢ dom ( 𝐹 ↾ 𝐴 ) ⊆ dom 𝐹 |
| 26 | 1 | simp3bi | ⊢ ( Smo 𝐹 → ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 27 | ssralv | ⊢ ( dom ( 𝐹 ↾ 𝐴 ) ⊆ dom 𝐹 → ( ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) → ∀ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 28 | 25 26 27 | mpsyl | ⊢ ( Smo 𝐹 → ∀ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 29 | 28 | adantr | ⊢ ( ( Smo 𝐹 ∧ Ord 𝐴 ) → ∀ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 30 | ordtr1 | ⊢ ( Ord dom ( 𝐹 ↾ 𝐴 ) → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ) → 𝑦 ∈ dom ( 𝐹 ↾ 𝐴 ) ) ) | |
| 31 | 22 30 | syl | ⊢ ( ( Smo 𝐹 ∧ Ord 𝐴 ) → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ) → 𝑦 ∈ dom ( 𝐹 ↾ 𝐴 ) ) ) |
| 32 | inss1 | ⊢ ( 𝐴 ∩ dom 𝐹 ) ⊆ 𝐴 | |
| 33 | 17 32 | eqsstri | ⊢ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 |
| 34 | 33 | sseli | ⊢ ( 𝑦 ∈ dom ( 𝐹 ↾ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 35 | 31 34 | syl6 | ⊢ ( ( Smo 𝐹 ∧ Ord 𝐴 ) → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) ) |
| 36 | 35 | expcomd | ⊢ ( ( Smo 𝐹 ∧ Ord 𝐴 ) → ( 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴 ) ) ) |
| 37 | 36 | imp31 | ⊢ ( ( ( ( Smo 𝐹 ∧ Ord 𝐴 ) ∧ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
| 38 | 37 | fvresd | ⊢ ( ( ( ( Smo 𝐹 ∧ Ord 𝐴 ) ∧ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 39 | 33 | sseli | ⊢ ( 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 40 | 39 | fvresd | ⊢ ( 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 41 | 40 | ad2antlr | ⊢ ( ( ( ( Smo 𝐹 ∧ Ord 𝐴 ) ∧ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 42 | 38 41 | eleq12d | ⊢ ( ( ( ( Smo 𝐹 ∧ Ord 𝐴 ) ∧ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 43 | 42 | ralbidva | ⊢ ( ( ( Smo 𝐹 ∧ Ord 𝐴 ) ∧ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 44 | 43 | ralbidva | ⊢ ( ( Smo 𝐹 ∧ Ord 𝐴 ) → ( ∀ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ∀ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 45 | 29 44 | mpbird | ⊢ ( ( Smo 𝐹 ∧ Ord 𝐴 ) → ∀ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ∀ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) |
| 46 | dfsmo2 | ⊢ ( Smo ( 𝐹 ↾ 𝐴 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ On ∧ Ord dom ( 𝐹 ↾ 𝐴 ) ∧ ∀ 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ∀ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) ) | |
| 47 | 14 22 45 46 | syl3anbrc | ⊢ ( ( Smo 𝐹 ∧ Ord 𝐴 ) → Smo ( 𝐹 ↾ 𝐴 ) ) |