This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smores3 | |- ( ( Smo ( A |` B ) /\ C e. ( dom A i^i B ) /\ Ord B ) -> Smo ( A |` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres | |- dom ( A |` B ) = ( B i^i dom A ) |
|
| 2 | incom | |- ( B i^i dom A ) = ( dom A i^i B ) |
|
| 3 | 1 2 | eqtri | |- dom ( A |` B ) = ( dom A i^i B ) |
| 4 | 3 | eleq2i | |- ( C e. dom ( A |` B ) <-> C e. ( dom A i^i B ) ) |
| 5 | smores | |- ( ( Smo ( A |` B ) /\ C e. dom ( A |` B ) ) -> Smo ( ( A |` B ) |` C ) ) |
|
| 6 | 4 5 | sylan2br | |- ( ( Smo ( A |` B ) /\ C e. ( dom A i^i B ) ) -> Smo ( ( A |` B ) |` C ) ) |
| 7 | 6 | 3adant3 | |- ( ( Smo ( A |` B ) /\ C e. ( dom A i^i B ) /\ Ord B ) -> Smo ( ( A |` B ) |` C ) ) |
| 8 | elinel2 | |- ( C e. ( dom A i^i B ) -> C e. B ) |
|
| 9 | ordelss | |- ( ( Ord B /\ C e. B ) -> C C_ B ) |
|
| 10 | 9 | ancoms | |- ( ( C e. B /\ Ord B ) -> C C_ B ) |
| 11 | 8 10 | sylan | |- ( ( C e. ( dom A i^i B ) /\ Ord B ) -> C C_ B ) |
| 12 | 11 | 3adant1 | |- ( ( Smo ( A |` B ) /\ C e. ( dom A i^i B ) /\ Ord B ) -> C C_ B ) |
| 13 | resabs1 | |- ( C C_ B -> ( ( A |` B ) |` C ) = ( A |` C ) ) |
|
| 14 | smoeq | |- ( ( ( A |` B ) |` C ) = ( A |` C ) -> ( Smo ( ( A |` B ) |` C ) <-> Smo ( A |` C ) ) ) |
|
| 15 | 12 13 14 | 3syl | |- ( ( Smo ( A |` B ) /\ C e. ( dom A i^i B ) /\ Ord B ) -> ( Smo ( ( A |` B ) |` C ) <-> Smo ( A |` C ) ) ) |
| 16 | 7 15 | mpbid | |- ( ( Smo ( A |` B ) /\ C e. ( dom A i^i B ) /\ Ord B ) -> Smo ( A |` C ) ) |