This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoiun | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ‘ 𝑥 ) ⊆ ( 𝐵 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ‘ 𝑥 ) ) | |
| 2 | smofvon | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐵 ‘ 𝐴 ) ∈ On ) | |
| 3 | smoel | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝐴 ) ) | |
| 4 | 3 | 3expia | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) |
| 5 | ontr1 | ⊢ ( ( 𝐵 ‘ 𝐴 ) ∈ On → ( ( 𝑦 ∈ ( 𝐵 ‘ 𝑥 ) ∧ ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝐴 ) ) → 𝑦 ∈ ( 𝐵 ‘ 𝐴 ) ) ) | |
| 6 | 5 | expcomd | ⊢ ( ( 𝐵 ‘ 𝐴 ) ∈ On → ( ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝐴 ) → ( 𝑦 ∈ ( 𝐵 ‘ 𝑥 ) → 𝑦 ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
| 7 | 2 4 6 | sylsyld | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ ( 𝐵 ‘ 𝑥 ) → 𝑦 ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
| 8 | 7 | rexlimdv | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ‘ 𝑥 ) → 𝑦 ∈ ( 𝐵 ‘ 𝐴 ) ) ) |
| 9 | 1 8 | biimtrid | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ‘ 𝑥 ) → 𝑦 ∈ ( 𝐵 ‘ 𝐴 ) ) ) |
| 10 | 9 | ssrdv | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ‘ 𝑥 ) ⊆ ( 𝐵 ‘ 𝐴 ) ) |