This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If x is less than y then a strictly monotone function's value will be strictly less at x than at y . (Contributed by Andrew Salmon, 22-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoel | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smodm | ⊢ ( Smo 𝐵 → Ord dom 𝐵 ) | |
| 2 | ordtr1 | ⊢ ( Ord dom 𝐵 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝐵 ) → 𝐶 ∈ dom 𝐵 ) ) | |
| 3 | 2 | ancomsd | ⊢ ( Ord dom 𝐵 → ( ( 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ dom 𝐵 ) ) |
| 4 | 3 | expdimp | ⊢ ( ( Ord dom 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ dom 𝐵 ) ) |
| 5 | 1 4 | sylan | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ dom 𝐵 ) ) |
| 6 | df-smo | ⊢ ( Smo 𝐵 ↔ ( 𝐵 : dom 𝐵 ⟶ On ∧ Ord dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) | |
| 7 | eleq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝑦 ↔ 𝐶 ∈ 𝑦 ) ) | |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 𝐶 ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ↔ ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ↔ ( 𝐶 ∈ 𝑦 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
| 11 | eleq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐶 ∈ 𝑦 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 12 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐵 ‘ 𝑦 ) = ( 𝐵 ‘ 𝐴 ) ) | |
| 13 | 12 | eleq2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝑦 ) ↔ ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) |
| 14 | 11 13 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝐶 ∈ 𝑦 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ↔ ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
| 15 | 10 14 | rspc2v | ⊢ ( ( 𝐶 ∈ dom 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
| 16 | 15 | ancoms | ⊢ ( ( 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ dom 𝐵 ) → ( ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
| 17 | 16 | com12 | ⊢ ( ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) → ( ( 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝐵 : dom 𝐵 ⟶ On ∧ Ord dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) → ( ( 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
| 19 | 6 18 | sylbi | ⊢ ( Smo 𝐵 → ( ( 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
| 20 | 19 | expdimp | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐶 ∈ dom 𝐵 → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
| 21 | 5 20 | syld | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
| 22 | 21 | pm2.43d | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) |
| 23 | 22 | 3impia | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) |