This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is a strictly monotone ordinal function, and A is in the domain of B , then the value of the function at A is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smofvon | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐵 ‘ 𝐴 ) ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-smo | ⊢ ( Smo 𝐵 ↔ ( 𝐵 : dom 𝐵 ⟶ On ∧ Ord dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) | |
| 2 | 1 | simp1bi | ⊢ ( Smo 𝐵 → 𝐵 : dom 𝐵 ⟶ On ) |
| 3 | 2 | ffvelcdmda | ⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐵 ‘ 𝐴 ) ∈ On ) |