This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoiun | |- ( ( Smo B /\ A e. dom B ) -> U_ x e. A ( B ` x ) C_ ( B ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun | |- ( y e. U_ x e. A ( B ` x ) <-> E. x e. A y e. ( B ` x ) ) |
|
| 2 | smofvon | |- ( ( Smo B /\ A e. dom B ) -> ( B ` A ) e. On ) |
|
| 3 | smoel | |- ( ( Smo B /\ A e. dom B /\ x e. A ) -> ( B ` x ) e. ( B ` A ) ) |
|
| 4 | 3 | 3expia | |- ( ( Smo B /\ A e. dom B ) -> ( x e. A -> ( B ` x ) e. ( B ` A ) ) ) |
| 5 | ontr1 | |- ( ( B ` A ) e. On -> ( ( y e. ( B ` x ) /\ ( B ` x ) e. ( B ` A ) ) -> y e. ( B ` A ) ) ) |
|
| 6 | 5 | expcomd | |- ( ( B ` A ) e. On -> ( ( B ` x ) e. ( B ` A ) -> ( y e. ( B ` x ) -> y e. ( B ` A ) ) ) ) |
| 7 | 2 4 6 | sylsyld | |- ( ( Smo B /\ A e. dom B ) -> ( x e. A -> ( y e. ( B ` x ) -> y e. ( B ` A ) ) ) ) |
| 8 | 7 | rexlimdv | |- ( ( Smo B /\ A e. dom B ) -> ( E. x e. A y e. ( B ` x ) -> y e. ( B ` A ) ) ) |
| 9 | 1 8 | biimtrid | |- ( ( Smo B /\ A e. dom B ) -> ( y e. U_ x e. A ( B ` x ) -> y e. ( B ` A ) ) ) |
| 10 | 9 | ssrdv | |- ( ( Smo B /\ A e. dom B ) -> U_ x e. A ( B ` x ) C_ ( B ` A ) ) |