This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The codomain of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smocdmdom | |- ( ( F : A --> B /\ Smo F /\ Ord B ) -> A C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> F : A --> B ) |
|
| 2 | 1 | ffnd | |- ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> F Fn A ) |
| 3 | simpl2 | |- ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> Smo F ) |
|
| 4 | smodm2 | |- ( ( F Fn A /\ Smo F ) -> Ord A ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> Ord A ) |
| 6 | ordelord | |- ( ( Ord A /\ x e. A ) -> Ord x ) |
|
| 7 | 5 6 | sylancom | |- ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> Ord x ) |
| 8 | simpl3 | |- ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> Ord B ) |
|
| 9 | simpr | |- ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> x e. A ) |
|
| 10 | smogt | |- ( ( F Fn A /\ Smo F /\ x e. A ) -> x C_ ( F ` x ) ) |
|
| 11 | 2 3 9 10 | syl3anc | |- ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> x C_ ( F ` x ) ) |
| 12 | ffvelcdm | |- ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
|
| 13 | 12 | 3ad2antl1 | |- ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> ( F ` x ) e. B ) |
| 14 | ordtr2 | |- ( ( Ord x /\ Ord B ) -> ( ( x C_ ( F ` x ) /\ ( F ` x ) e. B ) -> x e. B ) ) |
|
| 15 | 14 | imp | |- ( ( ( Ord x /\ Ord B ) /\ ( x C_ ( F ` x ) /\ ( F ` x ) e. B ) ) -> x e. B ) |
| 16 | 7 8 11 13 15 | syl22anc | |- ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> x e. B ) |
| 17 | 16 | ex | |- ( ( F : A --> B /\ Smo F /\ Ord B ) -> ( x e. A -> x e. B ) ) |
| 18 | 17 | ssrdv | |- ( ( F : A --> B /\ Smo F /\ Ord B ) -> A C_ B ) |