This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice join equals the double orthocomplement of subspace sum. (Contributed by NM, 27-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shjshs.1 | |- A e. SH |
|
| shjshs.2 | |- B e. SH |
||
| Assertion | shjshsi | |- ( A vH B ) = ( _|_ ` ( _|_ ` ( A +H B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shjshs.1 | |- A e. SH |
|
| 2 | shjshs.2 | |- B e. SH |
|
| 3 | shjval | |- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) |
| 5 | 1 2 | shunssi | |- ( A u. B ) C_ ( A +H B ) |
| 6 | 1 | shssii | |- A C_ ~H |
| 7 | 2 | shssii | |- B C_ ~H |
| 8 | 6 7 | unssi | |- ( A u. B ) C_ ~H |
| 9 | 1 2 | shscli | |- ( A +H B ) e. SH |
| 10 | 9 | shssii | |- ( A +H B ) C_ ~H |
| 11 | 8 10 | occon2i | |- ( ( A u. B ) C_ ( A +H B ) -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` ( A +H B ) ) ) ) |
| 12 | 5 11 | ax-mp | |- ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` ( A +H B ) ) ) |
| 13 | 4 12 | eqsstri | |- ( A vH B ) C_ ( _|_ ` ( _|_ ` ( A +H B ) ) ) |
| 14 | 1 2 | shsleji | |- ( A +H B ) C_ ( A vH B ) |
| 15 | 1 2 | shjcli | |- ( A vH B ) e. CH |
| 16 | 15 | chssii | |- ( A vH B ) C_ ~H |
| 17 | occon | |- ( ( ( A +H B ) C_ ~H /\ ( A vH B ) C_ ~H ) -> ( ( A +H B ) C_ ( A vH B ) -> ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( A +H B ) ) ) ) |
|
| 18 | 10 16 17 | mp2an | |- ( ( A +H B ) C_ ( A vH B ) -> ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( A +H B ) ) ) |
| 19 | 14 18 | ax-mp | |- ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( A +H B ) ) |
| 20 | occl | |- ( ( A +H B ) C_ ~H -> ( _|_ ` ( A +H B ) ) e. CH ) |
|
| 21 | 10 20 | ax-mp | |- ( _|_ ` ( A +H B ) ) e. CH |
| 22 | 15 21 | chsscon1i | |- ( ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( A +H B ) ) <-> ( _|_ ` ( _|_ ` ( A +H B ) ) ) C_ ( A vH B ) ) |
| 23 | 19 22 | mpbi | |- ( _|_ ` ( _|_ ` ( A +H B ) ) ) C_ ( A vH B ) |
| 24 | 13 23 | eqssi | |- ( A vH B ) = ( _|_ ` ( _|_ ` ( A +H B ) ) ) |