This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum is smaller than Hilbert lattice join. Remark in Kalmbach p. 65. (Contributed by NM, 19-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
| shincl.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | shsleji | ⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shincl.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | 1 2 | shseli | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 4 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 5 | 1 2 | shunssji | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 6 | 4 5 | sstri | ⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 7 | 6 | sseli | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 8 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 9 | 8 5 | sstri | ⊢ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 10 | 9 | sseli | ⊢ ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 11 | shjcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) | |
| 12 | 1 2 11 | mp2an | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
| 13 | 12 | chshii | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Sℋ |
| 14 | shaddcl | ⊢ ( ( ( 𝐴 ∨ℋ 𝐵 ) ∈ Sℋ ∧ 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 ∨ℋ 𝐵 ) ) → ( 𝑦 +ℎ 𝑧 ) ∈ ( 𝐴 ∨ℋ 𝐵 ) ) | |
| 15 | 13 14 | mp3an1 | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 ∨ℋ 𝐵 ) ) → ( 𝑦 +ℎ 𝑧 ) ∈ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 16 | 7 10 15 | syl2an | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 +ℎ 𝑧 ) ∈ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 17 | eleq1a | ⊢ ( ( 𝑦 +ℎ 𝑧 ) ∈ ( 𝐴 ∨ℋ 𝐵 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 ∨ℋ 𝐵 ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 19 | 18 | rexlimivv | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 20 | 3 19 | sylbi | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) → 𝑥 ∈ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 21 | 20 | ssriv | ⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |