This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsms.x | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝑀 ) ) | |
| setsms.d | ⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) | ||
| setsms.k | ⊢ ( 𝜑 → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) | ||
| setsms.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | ||
| Assertion | setsmstopn | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsms.x | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝑀 ) ) | |
| 2 | setsms.d | ⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) | |
| 3 | setsms.k | ⊢ ( 𝜑 → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) | |
| 4 | setsms.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | |
| 5 | 1 2 3 4 | setsmstset | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( TopSet ‘ 𝐾 ) ) |
| 6 | df-mopn | ⊢ MetOpen = ( 𝑥 ∈ ∪ ran ∞Met ↦ ( topGen ‘ ran ( ball ‘ 𝑥 ) ) ) | |
| 7 | 6 | dmmptss | ⊢ dom MetOpen ⊆ ∪ ran ∞Met |
| 8 | 7 | sseli | ⊢ ( 𝐷 ∈ dom MetOpen → 𝐷 ∈ ∪ ran ∞Met ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met ) → 𝐷 ∈ ∪ ran ∞Met ) | |
| 10 | xmetunirn | ⊢ ( 𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) | |
| 11 | 9 10 | sylib | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
| 12 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 13 | 12 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) → dom dom 𝐷 = ∪ ( MetOpen ‘ 𝐷 ) ) |
| 14 | 11 13 | syl | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met ) → dom dom 𝐷 = ∪ ( MetOpen ‘ 𝐷 ) ) |
| 15 | 2 | dmeqd | ⊢ ( 𝜑 → dom 𝐷 = dom ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
| 16 | dmres | ⊢ dom ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( 𝑋 × 𝑋 ) ∩ dom ( dist ‘ 𝑀 ) ) | |
| 17 | 15 16 | eqtrdi | ⊢ ( 𝜑 → dom 𝐷 = ( ( 𝑋 × 𝑋 ) ∩ dom ( dist ‘ 𝑀 ) ) ) |
| 18 | inss1 | ⊢ ( ( 𝑋 × 𝑋 ) ∩ dom ( dist ‘ 𝑀 ) ) ⊆ ( 𝑋 × 𝑋 ) | |
| 19 | 17 18 | eqsstrdi | ⊢ ( 𝜑 → dom 𝐷 ⊆ ( 𝑋 × 𝑋 ) ) |
| 20 | dmss | ⊢ ( dom 𝐷 ⊆ ( 𝑋 × 𝑋 ) → dom dom 𝐷 ⊆ dom ( 𝑋 × 𝑋 ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → dom dom 𝐷 ⊆ dom ( 𝑋 × 𝑋 ) ) |
| 22 | dmxpid | ⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 | |
| 23 | 21 22 | sseqtrdi | ⊢ ( 𝜑 → dom dom 𝐷 ⊆ 𝑋 ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met ) → dom dom 𝐷 ⊆ 𝑋 ) |
| 25 | 14 24 | eqsstrrd | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met ) → ∪ ( MetOpen ‘ 𝐷 ) ⊆ 𝑋 ) |
| 26 | sspwuni | ⊢ ( ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 𝑋 ↔ ∪ ( MetOpen ‘ 𝐷 ) ⊆ 𝑋 ) | |
| 27 | 25 26 | sylibr | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met ) → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 𝑋 ) |
| 28 | 27 | ex | ⊢ ( 𝜑 → ( 𝐷 ∈ ∪ ran ∞Met → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 𝑋 ) ) |
| 29 | 8 28 | syl5 | ⊢ ( 𝜑 → ( 𝐷 ∈ dom MetOpen → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 𝑋 ) ) |
| 30 | ndmfv | ⊢ ( ¬ 𝐷 ∈ dom MetOpen → ( MetOpen ‘ 𝐷 ) = ∅ ) | |
| 31 | 0ss | ⊢ ∅ ⊆ 𝒫 𝑋 | |
| 32 | 30 31 | eqsstrdi | ⊢ ( ¬ 𝐷 ∈ dom MetOpen → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 𝑋 ) |
| 33 | 29 32 | pm2.61d1 | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) ⊆ 𝒫 𝑋 ) |
| 34 | 1 2 3 | setsmsbas | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 35 | 34 | pweqd | ⊢ ( 𝜑 → 𝒫 𝑋 = 𝒫 ( Base ‘ 𝐾 ) ) |
| 36 | 33 5 35 | 3sstr3d | ⊢ ( 𝜑 → ( TopSet ‘ 𝐾 ) ⊆ 𝒫 ( Base ‘ 𝐾 ) ) |
| 37 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 38 | eqid | ⊢ ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐾 ) | |
| 39 | 37 38 | topnid | ⊢ ( ( TopSet ‘ 𝐾 ) ⊆ 𝒫 ( Base ‘ 𝐾 ) → ( TopSet ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) ) |
| 40 | 36 39 | syl | ⊢ ( 𝜑 → ( TopSet ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) ) |
| 41 | 5 40 | eqtrd | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) |