This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsms.x | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝑀 ) ) | |
| setsms.d | ⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) | ||
| setsms.k | ⊢ ( 𝜑 → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) | ||
| setsms.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | ||
| Assertion | setsmstset | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( TopSet ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsms.x | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝑀 ) ) | |
| 2 | setsms.d | ⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) | |
| 3 | setsms.k | ⊢ ( 𝜑 → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) | |
| 4 | setsms.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | |
| 5 | fvex | ⊢ ( MetOpen ‘ 𝐷 ) ∈ V | |
| 6 | tsetid | ⊢ TopSet = Slot ( TopSet ‘ ndx ) | |
| 7 | 6 | setsid | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( MetOpen ‘ 𝐷 ) ∈ V ) → ( MetOpen ‘ 𝐷 ) = ( TopSet ‘ ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) ) |
| 8 | 4 5 7 | sylancl | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( TopSet ‘ ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) ) |
| 9 | 3 | fveq2d | ⊢ ( 𝜑 → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) ) |
| 10 | 8 9 | eqtr4d | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( TopSet ‘ 𝐾 ) ) |