This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constructed metric space is a metric space iff the provided distance function is a metric. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsms.x | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝑀 ) ) | |
| setsms.d | ⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) | ||
| setsms.k | ⊢ ( 𝜑 → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) | ||
| setsms.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | ||
| Assertion | setsxms | ⊢ ( 𝜑 → ( 𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsms.x | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝑀 ) ) | |
| 2 | setsms.d | ⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) | |
| 3 | setsms.k | ⊢ ( 𝜑 → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) | |
| 4 | setsms.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | |
| 5 | 1 2 3 4 | setsmstopn | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) |
| 6 | 1 2 3 | setsmsds | ⊢ ( 𝜑 → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |
| 7 | 1 2 3 | setsmsbas | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 8 | 7 | sqxpeqd | ⊢ ( 𝜑 → ( 𝑋 × 𝑋 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 9 | 6 8 | reseq12d | ⊢ ( 𝜑 → ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 10 | 2 9 | eqtrd | ⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 12 | 5 11 | eqtr3d | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 13 | eqid | ⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) | |
| 14 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 15 | eqid | ⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) | |
| 16 | 13 14 15 | isxms2 | ⊢ ( 𝐾 ∈ ∞MetSp ↔ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ∧ ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ) |
| 17 | 16 | rbaib | ⊢ ( ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) → ( 𝐾 ∈ ∞MetSp ↔ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 18 | 12 17 | syl | ⊢ ( 𝜑 → ( 𝐾 ∈ ∞MetSp ↔ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 19 | 7 | fveq2d | ⊢ ( 𝜑 → ( ∞Met ‘ 𝑋 ) = ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) |
| 20 | 10 19 | eleq12d | ⊢ ( 𝜑 → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 21 | 18 20 | bitr4d | ⊢ ( 𝜑 → ( 𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ) |