This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsms.x | |- ( ph -> X = ( Base ` M ) ) |
|
| setsms.d | |- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
||
| setsms.k | |- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
||
| setsms.m | |- ( ph -> M e. V ) |
||
| Assertion | setsmstopn | |- ( ph -> ( MetOpen ` D ) = ( TopOpen ` K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsms.x | |- ( ph -> X = ( Base ` M ) ) |
|
| 2 | setsms.d | |- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
|
| 3 | setsms.k | |- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
|
| 4 | setsms.m | |- ( ph -> M e. V ) |
|
| 5 | 1 2 3 4 | setsmstset | |- ( ph -> ( MetOpen ` D ) = ( TopSet ` K ) ) |
| 6 | df-mopn | |- MetOpen = ( x e. U. ran *Met |-> ( topGen ` ran ( ball ` x ) ) ) |
|
| 7 | 6 | dmmptss | |- dom MetOpen C_ U. ran *Met |
| 8 | 7 | sseli | |- ( D e. dom MetOpen -> D e. U. ran *Met ) |
| 9 | simpr | |- ( ( ph /\ D e. U. ran *Met ) -> D e. U. ran *Met ) |
|
| 10 | xmetunirn | |- ( D e. U. ran *Met <-> D e. ( *Met ` dom dom D ) ) |
|
| 11 | 9 10 | sylib | |- ( ( ph /\ D e. U. ran *Met ) -> D e. ( *Met ` dom dom D ) ) |
| 12 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 13 | 12 | mopnuni | |- ( D e. ( *Met ` dom dom D ) -> dom dom D = U. ( MetOpen ` D ) ) |
| 14 | 11 13 | syl | |- ( ( ph /\ D e. U. ran *Met ) -> dom dom D = U. ( MetOpen ` D ) ) |
| 15 | 2 | dmeqd | |- ( ph -> dom D = dom ( ( dist ` M ) |` ( X X. X ) ) ) |
| 16 | dmres | |- dom ( ( dist ` M ) |` ( X X. X ) ) = ( ( X X. X ) i^i dom ( dist ` M ) ) |
|
| 17 | 15 16 | eqtrdi | |- ( ph -> dom D = ( ( X X. X ) i^i dom ( dist ` M ) ) ) |
| 18 | inss1 | |- ( ( X X. X ) i^i dom ( dist ` M ) ) C_ ( X X. X ) |
|
| 19 | 17 18 | eqsstrdi | |- ( ph -> dom D C_ ( X X. X ) ) |
| 20 | dmss | |- ( dom D C_ ( X X. X ) -> dom dom D C_ dom ( X X. X ) ) |
|
| 21 | 19 20 | syl | |- ( ph -> dom dom D C_ dom ( X X. X ) ) |
| 22 | dmxpid | |- dom ( X X. X ) = X |
|
| 23 | 21 22 | sseqtrdi | |- ( ph -> dom dom D C_ X ) |
| 24 | 23 | adantr | |- ( ( ph /\ D e. U. ran *Met ) -> dom dom D C_ X ) |
| 25 | 14 24 | eqsstrrd | |- ( ( ph /\ D e. U. ran *Met ) -> U. ( MetOpen ` D ) C_ X ) |
| 26 | sspwuni | |- ( ( MetOpen ` D ) C_ ~P X <-> U. ( MetOpen ` D ) C_ X ) |
|
| 27 | 25 26 | sylibr | |- ( ( ph /\ D e. U. ran *Met ) -> ( MetOpen ` D ) C_ ~P X ) |
| 28 | 27 | ex | |- ( ph -> ( D e. U. ran *Met -> ( MetOpen ` D ) C_ ~P X ) ) |
| 29 | 8 28 | syl5 | |- ( ph -> ( D e. dom MetOpen -> ( MetOpen ` D ) C_ ~P X ) ) |
| 30 | ndmfv | |- ( -. D e. dom MetOpen -> ( MetOpen ` D ) = (/) ) |
|
| 31 | 0ss | |- (/) C_ ~P X |
|
| 32 | 30 31 | eqsstrdi | |- ( -. D e. dom MetOpen -> ( MetOpen ` D ) C_ ~P X ) |
| 33 | 29 32 | pm2.61d1 | |- ( ph -> ( MetOpen ` D ) C_ ~P X ) |
| 34 | 1 2 3 | setsmsbas | |- ( ph -> X = ( Base ` K ) ) |
| 35 | 34 | pweqd | |- ( ph -> ~P X = ~P ( Base ` K ) ) |
| 36 | 33 5 35 | 3sstr3d | |- ( ph -> ( TopSet ` K ) C_ ~P ( Base ` K ) ) |
| 37 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 38 | eqid | |- ( TopSet ` K ) = ( TopSet ` K ) |
|
| 39 | 37 38 | topnid | |- ( ( TopSet ` K ) C_ ~P ( Base ` K ) -> ( TopSet ` K ) = ( TopOpen ` K ) ) |
| 40 | 36 39 | syl | |- ( ph -> ( TopSet ` K ) = ( TopOpen ` K ) ) |
| 41 | 5 40 | eqtrd | |- ( ph -> ( MetOpen ` D ) = ( TopOpen ` K ) ) |