This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of set induction (or _E -induction). If a property passes from all elements of x to x itself, then it holds for all x . (Contributed by Scott Fenton, 10-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | setinds.1 | ⊢ ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) | |
| Assertion | setinds | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setinds.1 | ⊢ ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | setind | ⊢ ( ∀ 𝑧 ( 𝑧 ⊆ { 𝑥 ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∣ 𝜑 } ) → { 𝑥 ∣ 𝜑 } = V ) | |
| 4 | dfss3 | ⊢ ( 𝑧 ⊆ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ∈ 𝑧 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) | |
| 5 | df-sbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) | |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∈ 𝑧 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
| 7 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 8 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 | |
| 9 | 7 8 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 |
| 10 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 | |
| 11 | 9 10 | nfim | ⊢ Ⅎ 𝑥 ( ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) |
| 12 | raleq | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 13 | sbceq1a | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 14 | 12 13 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ↔ ( ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
| 15 | 11 14 1 | chvarfv | ⊢ ( ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) |
| 16 | 6 15 | sylbir | ⊢ ( ∀ 𝑦 ∈ 𝑧 𝑦 ∈ { 𝑥 ∣ 𝜑 } → [ 𝑧 / 𝑥 ] 𝜑 ) |
| 17 | 4 16 | sylbi | ⊢ ( 𝑧 ⊆ { 𝑥 ∣ 𝜑 } → [ 𝑧 / 𝑥 ] 𝜑 ) |
| 18 | df-sbc | ⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 ∈ { 𝑥 ∣ 𝜑 } ) | |
| 19 | 17 18 | sylib | ⊢ ( 𝑧 ⊆ { 𝑥 ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∣ 𝜑 } ) |
| 20 | 3 19 | mpg | ⊢ { 𝑥 ∣ 𝜑 } = V |
| 21 | 20 | eqcomi | ⊢ V = { 𝑥 ∣ 𝜑 } |
| 22 | 21 | eqabri | ⊢ ( 𝑥 ∈ V ↔ 𝜑 ) |
| 23 | 2 22 | mpbi | ⊢ 𝜑 |