This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set (epsilon) induction. Theorem 5.22 of TakeutiZaring p. 21. (Contributed by NM, 17-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setind | ⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → 𝐴 = V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssindif0 | ⊢ ( 𝑦 ⊆ 𝐴 ↔ ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ ) | |
| 2 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 3 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 4 | 2 3 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ↔ ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
| 5 | 4 | spvv | ⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴 ) ) |
| 6 | 1 5 | biimtrrid | ⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ → 𝑦 ∈ 𝐴 ) ) |
| 7 | eldifn | ⊢ ( 𝑦 ∈ ( V ∖ 𝐴 ) → ¬ 𝑦 ∈ 𝐴 ) | |
| 8 | 6 7 | nsyli | ⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( V ∖ 𝐴 ) → ¬ ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ ) ) |
| 9 | 8 | imp | ⊢ ( ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( V ∖ 𝐴 ) ) → ¬ ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ ) |
| 10 | 9 | nrexdv | ⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ¬ ∃ 𝑦 ∈ ( V ∖ 𝐴 ) ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ ) |
| 11 | zfregs | ⊢ ( ( V ∖ 𝐴 ) ≠ ∅ → ∃ 𝑦 ∈ ( V ∖ 𝐴 ) ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ ) | |
| 12 | 11 | necon1bi | ⊢ ( ¬ ∃ 𝑦 ∈ ( V ∖ 𝐴 ) ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ → ( V ∖ 𝐴 ) = ∅ ) |
| 13 | 10 12 | syl | ⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → ( V ∖ 𝐴 ) = ∅ ) |
| 14 | vdif0 | ⊢ ( 𝐴 = V ↔ ( V ∖ 𝐴 ) = ∅ ) | |
| 15 | 13 14 | sylibr | ⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) → 𝐴 = V ) |