This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of set induction (or _E -induction). If a property passes from all elements of x to x itself, then it holds for all x . (Contributed by Scott Fenton, 10-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | setinds.1 | |- ( A. y e. x [. y / x ]. ph -> ph ) |
|
| Assertion | setinds | |- ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setinds.1 | |- ( A. y e. x [. y / x ]. ph -> ph ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | setind | |- ( A. z ( z C_ { x | ph } -> z e. { x | ph } ) -> { x | ph } = _V ) |
|
| 4 | dfss3 | |- ( z C_ { x | ph } <-> A. y e. z y e. { x | ph } ) |
|
| 5 | df-sbc | |- ( [. y / x ]. ph <-> y e. { x | ph } ) |
|
| 6 | 5 | ralbii | |- ( A. y e. z [. y / x ]. ph <-> A. y e. z y e. { x | ph } ) |
| 7 | nfcv | |- F/_ x z |
|
| 8 | nfsbc1v | |- F/ x [. y / x ]. ph |
|
| 9 | 7 8 | nfralw | |- F/ x A. y e. z [. y / x ]. ph |
| 10 | nfsbc1v | |- F/ x [. z / x ]. ph |
|
| 11 | 9 10 | nfim | |- F/ x ( A. y e. z [. y / x ]. ph -> [. z / x ]. ph ) |
| 12 | raleq | |- ( x = z -> ( A. y e. x [. y / x ]. ph <-> A. y e. z [. y / x ]. ph ) ) |
|
| 13 | sbceq1a | |- ( x = z -> ( ph <-> [. z / x ]. ph ) ) |
|
| 14 | 12 13 | imbi12d | |- ( x = z -> ( ( A. y e. x [. y / x ]. ph -> ph ) <-> ( A. y e. z [. y / x ]. ph -> [. z / x ]. ph ) ) ) |
| 15 | 11 14 1 | chvarfv | |- ( A. y e. z [. y / x ]. ph -> [. z / x ]. ph ) |
| 16 | 6 15 | sylbir | |- ( A. y e. z y e. { x | ph } -> [. z / x ]. ph ) |
| 17 | 4 16 | sylbi | |- ( z C_ { x | ph } -> [. z / x ]. ph ) |
| 18 | df-sbc | |- ( [. z / x ]. ph <-> z e. { x | ph } ) |
|
| 19 | 17 18 | sylib | |- ( z C_ { x | ph } -> z e. { x | ph } ) |
| 20 | 3 19 | mpg | |- { x | ph } = _V |
| 21 | 20 | eqcomi | |- _V = { x | ph } |
| 22 | 21 | eqabri | |- ( x e. _V <-> ph ) |
| 23 | 2 22 | mpbi | |- ph |