This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of set induction (or _E -induction). If a property passes from all elements of x to x itself, then it holds for all x . (Contributed by Scott Fenton, 10-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | setinds.1 | ||
| Assertion | setinds |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setinds.1 | ||
| 2 | vex | ||
| 3 | setind | ||
| 4 | dfss3 | ||
| 5 | df-sbc | ||
| 6 | 5 | ralbii | |
| 7 | nfcv | ||
| 8 | nfsbc1v | ||
| 9 | 7 8 | nfralw | |
| 10 | nfsbc1v | ||
| 11 | 9 10 | nfim | |
| 12 | raleq | ||
| 13 | sbceq1a | ||
| 14 | 12 13 | imbi12d | |
| 15 | 11 14 1 | chvarfv | |
| 16 | 6 15 | sylbir | |
| 17 | 4 16 | sylbi | |
| 18 | df-sbc | ||
| 19 | 17 18 | sylib | |
| 20 | 3 19 | mpg | |
| 21 | 20 | eqcomi | |
| 22 | 21 | eqabri | |
| 23 | 2 22 | mpbi |