This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: _E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setinds2f.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| setinds2f.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| setinds2f.3 | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) | ||
| Assertion | setinds2f | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setinds2f.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | setinds2f.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | setinds2f.3 | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) | |
| 4 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 5 | 1 2 | sbiev | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 6 | 4 5 | bitr3i | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 8 | 7 3 | sylbi | ⊢ ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) |
| 9 | 8 | setinds | ⊢ 𝜑 |